
CODATACODATA
II
SS
UU

Wang, J, et al. 2019. Research of LOB Data Compression
and Read-Write Efficiency in Oracle Database. Data Science
Journal, 18: 8, pp. 1–10. DOI: https://doi.org/10.5334/dsj-
2019-008

RESEARCH PAPER

Research of LOB Data Compression and Read-Write
Efficiency in Oracle Database
Jianjun Wang1, Yingang Zhao2 and Gaochuan Liu3

1	Gansu Provincial Earthquake Administration, Lanzhou, CN
2	Anqiu Earthquake Station, Weifang, CN
3	China Earthquake Networks Center, Beijing, CN
Corresponding author: Yingang Zhao (40857347@qq.com)

Aiming at the problems of huge storage space, low exchange speed and low read-write speed
of the current specific oracle database, the read-write speed and exchange speed tests are
performed on the compressed and uncompressed Clob and Blob data by three compression
algorithms, including Bzip2, Gzip and GzipIO respectively. The read speed test is performed by
the direct read, substr read, and substr+threadPool read techniques. The results show that: (1)
Blob is superior to Clob in terms of storage, exchange, or read-write speed; (2) For the spe-
cific database, Blob+Gzip is the optimal storage structure of the minute and second data. The
read-write speed is greatly improved, and the overall capacity of the database is reduced to
7% (or less). The exchange rate of the second data is at least 7.89 times of the present rate,
and the station data can be exchanged to the disciplinary center within 2–3 hours (currently
1.5 days); (3) The simplest and most widely used direct read method by software developers
has poor database read efficiency, while the substr+threadPool technique shows higher database
read efficiency no matter for Clob or Blob, for compressed or uncompressed, which brings a
leap-forward improvement in the read speed of LOB data. The results of this paper are of high
reference significance to the LOB data storage design and software development.

Keywords: Oracle LOB; compression; database read method; speed test

Introduction
At the end of 2007, the “10th Five-Year” system of a specific network was officially completed and put into
operation. The software system is a four-level interconnected distributed system consisting of station, pro-
vincial bureau, national center and disciplinary center. In order to facilitate data exchange at all levels,
a unified database management system (Oracle10g) and a unified database table structure are adopted
nationwide (Zhou Kechang et al, 2009, 2010; Liu Gaochuan 2008). There are two main software systems:
management system (B/S architecture, Running on the server) and processing system (C/S architecture,
Running on the client PC machine). The former is responsible for daily data collection and storage, while
the latter is responsible for daily data preprocessing and product data calculation. The management system
exchanges the station data to the provincial bureau, national center, and disciplinary center on daily timing
(Liu Gaochuan, 2008).

The national center is the collection center for specific data across the country and is also the largest
specific database. As of August 2018, the data outputted by 3328 sets of observation instruments (364 sets
of second sampling instruments, 2126 sets of minute-sampling instruments, 838 sets of hourly and daily
sampling instruments) is stored in the database. The total database size is about 8000GB, which is still
increasing by 800GB every year. In addition, the total data with a time resolution of minutes and seconds
accounts for more than 95% (or more) of the total space of the database.

As all the minute and second data is stored in the format of “uncompressed Clob+Ascii”, and the database
is caught in problems of huge data storage space, low data exchange speed, low read-write speed, operation

https://doi.org/10.5334/dsj-2019-008
https://doi.org/10.5334/dsj-2019-008
mailto:40857347@qq.com

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle DatabaseArt. 8, page 2 of 10

and maintenance difficulty. For example, it takes about 4 minutes for the “processing system” to remotely
read the second sampling data of 6 elements in an instrument, and it takes at least 1.5 days to exchange the
updated station observation data to the disciplinary center. Besides, 10 days are required to continuously
copy the national central database (8000GB) cold backup to another server, during which the database and
all services must be shut down. This cold backup method is obviously unrealistic; the hot-backup system
(autonomously developed by the specific system) can only correspond to one server due to the software
reasons. If there is a problem with both the main database and the backup database, data loss will be
catastrophic.

With the development of the information society, people are faced with rapidly growing information, and
the pressure on storing, transmitting and processing such massive information is increasing. In this case,
data compression is an inevitable choice. In order to save information storage space and improve informa-
tion transmission efficiency, a large amount of actual data must be effectively compressed. Data compres-
sion has been greatly valued as a support technology for solving the storage and transmission of massive
information (ZHENG Cui-fang, 2011).

Data compression technique is generally classified into lossy compression and lossless compression.
Lossless compression means that the reconstructed compressed data (reduced and decompressed) must be
identical to the original data, and is suitable for the cases where the reconstructed signal is required to be
identical to the original signal (LI Lei-ding et al, 2009; ZHENG Cui-fang, 2011). Lossless data compression
algorithms are mainly divided into two categories according to the compression models: Statistical com-
pression based algorithm and dictionary compression based algorithm. The statistical compression based
algorithm mainly includes: Run length coding, Huffman coding, arithmetic coding, etc.; dictionary compres-
sion based algorithms mainly include: LZ77, LZ78, LZW, LZSS, etc. (LI Lei-ding et al, 2009; XU Xia et al, 2009;
ZHENG Cui-fang, 2011; ZHANG Ai-hua et al, 2017). The compression algorithm must be able to provide a
high data compression rate to support the real-time mass data storage characteristics of the database. Both
compression and decompression processes must present better speed performance (LIU Hong-xia et al,
2010).

Bzip2 is a data compression algorithm and program developed by Julian Seward and released under
the Free Software/Open Source Software Agreement. Seward released Bzip2 0.15 for the first time in July
1996. In the following years, the stability of this compression tool was improved and became more popular.
Seward released Version 1.0 and Version 1.0.3 in 2000 and 2007 respectively (J Seward, 2002, 2007). Bzip2
is a lossless compression algorithm based on Burrows-Wheeler Transform (BWT). With its compression rate
advantage, it has been more widely applied. BWT is a transform method independent of internal repeatabil-
ity of data and it can effectively bring together the same characters in data to create conditions for further
compression (Li Bing et al, 2015). It is able to compress the common data to 10% to 15%, and offers high
compression and decompression efficiency. It is widely used in many versions of UNIX & LINUX, and sup-
ports most compression formats, including tar and Gzip. Its main advantages include: Bzip2 open source,
free of charge; support for repairing media errors. When it is required to obtain the data in the errone-
ous compressed file, Bzip2 can still perfectly decompress the unbroken part; it can run on any 32-bit or
64-bit host containing ANSI C compiler (Jeff Gilchrist, 2008; V Pankratius et al, 2009; M Mccool et al, 2012;
JS Salazar et al, 2017).

Bzip2 provides two data compression algorithms, including Bzip2 and Gzip, which can be called by dll
interface file, ICSharpCode.SharpZipLib.dll. The System.IO.Compression namespace of Microsoft .Net also
provides another Gzip compression algorithm, which is referred to as GzipIO in this paper.

In Oracle database, Clob and Blob (Abbreviated LOB) are two typical large object data storage structures,
which are widely used in all levels of databases. Clob can only store single-byte character data, and is mostly
used to store long text data. Blob is used to store unstructured binary data, mainly including formatted
images, videos, audio and Word documents (NIE Hong-mei et al, 2006; ZHANG Jing et al, 2011; ZHANG Hui
et al, 2012; XIE Yi et al, 2015).

Based on the Microsoft .Net development platform, this paper uses Bzip2, Gzip, and GzipIO compression
algorithms to test and compare the read-write speed, exchange speed of the compressed and uncompressed
data of Clob and Blob. The three techniques, including direct read, substr read and substr+threadPool read,
are applied for the read speed test. The advantages and disadvantages of each compression algorithm and
database read method are summarized in order to test the “optimal” compression algorithm and database
read method for the specific database.

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle Database Art. 8, page 3 of 10

1 Test data and research method
1.1 Test data
The test data selected in this paper are 6 elements of minute and second data in 31 days outputted from
an instrument from January 1 to January 31, 2009. The instrument adopts second sampling, and each ele-
ment includes 86400 second sample data per day. The minute data is calculated by the second sample data
through Gaussian filtering, and each element includes 1440 minute sample data per day.

All the test results in this paper are completed in the office of Lanzhou, Gansu Province. The local server is
located in the information room of the work unit while the remote server is located in the information room
of a research institute in Beijing. The test data and table structure of the local and remote are identical. The
test software is client software written on the Microsoft .Net development platform (running on an office
PC machine).

1.2 Minute and second data table structure
The minute and second data table structure in the specific database is shown in Table 1. The observation
data is in Table 1. The observation data is stored in the format of “uncompressed Clob+Ascii”, and one
record is required to be made by each set of instruments per day.

1.3 LOB data compression and decompression method
After the interface file ICSharpCode.SharpZipLib. dll provided by Bzip2 is referred to in Microsoft .Net,
the BZip2OutputStream and BZip2InputStream method are called through the namespace ICSharpCode.
SharpZipLib to complete Bzip2 compression and decompression, the GzipOutputStream and GzipInput-
Stream method are called to complete Gzip compression and decompression, respectively. The process
of GzipIO compression and decompression is completed by calling System.IO.Compression.GzipStream
method.

1.4 Database connection and LOB read-write method
The Microsoft .Net framework uses ADO.NET to complete access to the database, and OracleConnection for
database connection, OracleDataAdapter and DataTable for LOB data reading and temporary storage, and
OracleCommand for LOB data writing.

1.5 Three LOB read methods
1) �Direct read: For software developers, the simplest and most common database read method for

LOB data is to read directly using Select LobName.
2) �Substr read: Both Clob and Blob can use the substr function in Oracle’s own DBMS_LOB pack-

age to read data segmentally, namely Select DBMS_LOB.substr(lobName, n, pos), where lobName
is Lob field name, n is the number of bytes read, and pos is the starting position of the read. The
maximum length that the Clob can read is 4000 bytes at a time, while the maximum length that
the Blob can read is 2000 bytes at a time. Therefore, the substr read must be cyclically executed,
and the starting position (pos) of the read must be reset every time. After the cycle, the data of
the same date should be spliced in order.

Table 1: Minute and second data table structure of specific database.

Field name Primary key Field type Example of value Description of value

startDate √ date 2006-02-23 One record per day

stationID √ Char(5) 44010 National unified 5-digit station ID

pointID √ Char(1) 4 Positioned to each set of instrument

itemID √ Char(4) 3125 D, H, Z, F, I, X, Y

sampleRate Char(2) 01 01: Minute data, 02: Second data

obsValue Clob 86.73 86.23 … 89.12 The data is separated by a space character, 1440
minute data and 86400 second data are observed
per day.

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle DatabaseArt. 8, page 4 of 10

3) �Substr+threadPool read: ThreadPool class provides thread pool management in Microsoft .NET.
The SQL statement from substr read is placed in the thread pool in turn, which can execute the
“substr read” in parallel (multiple threads read at the same time). Besides, a separate sub-thread
class is required, which needs to create a new database connection to execute the SQL statement
of substr read; after all the tasks are added to the thread pool, a while loop is required to exit the
cycle and perform subsequent operations after all threads have been executed.

2 LOB data compression and exchange speed test
2.1 LOB data compression test
Bzip2, Gzip and GzipIO compression algorithms are used to test minute and second data of an instrument
in January 2009 outputted by an instrument. Table 2 shows the Average compression rate of every record.
For both minute and second data, the compression rate of Bzip2 is the highest, followed by Gzip and GzipIO
successively; the capacity of compressed record in Bzip2 is the smallest, which means that the compressed
record occupies smaller storage space. However, Bzip2 takes the longest compression and decompression
time, far higher than that of other two algorithm. This means that the database read (decompression) and
write (compression) consume a longer time. The compression time of Gzip is about 2.5 times of that of
GzipIO but the difference in the decompression time of both algorithms is very small. But the binary com-
pression rate of minute and second data is improved by 5% and 3% respectively.

2.2 LOB data exchange speed test
Currently, the specific management system software adopts “dbLink+Insert” technique in data exchange.
The core command of the data exchange is “insert into XX from XX@dbLinkName”, where dbLinkName is
the dbLink of the remote database. The statement directly insert the data from a remote table into the same
table at the local database (The local data records are firstly deleted and then inserted when data records
exist). According to the current specific data exchange mechanism, there is no need to parse the LOB data
during the exchange process. Therefore, the compression and decompression efficiency has no effect on the
exchange speed, and only the capacity of each record can be affected by the exchange speed. After logging
into the remote (Beijing) database, the command is run directly, and its execution time is taken as the actual
exchange time, which refers to the average time for each record to be transmitted from the local (Lanzhou)
to the remote (Beijing). The data exchange speed test results of an instrument in Lanzhou in January 2009
are shown in Table 3. The estimated exchange rate = Capacity of “uncompressed Clob”/other capacity, and
the actual exchange rate = Exchange time of “uncompressed Clob”/other exchange time.

Table 3 shows the Average data exchange speed test of every record. For both Clob and Blob, the actual
exchange rate of the three compression algorithm for minute and second data is not as good as the estimated
exchange rate, and the actual exchange rate of the second data Blob compression is improved by 7–9 times,
but the actual exchange rate of the minute data is only slightly increased; regarding the Blob and Clob
uncompressed algorithm for second data, the actual exchange rate is improved by 1.84 times in the case of
the same storage capacity.

Table 2: Average compression rate of every record.

Data Compression
algorithm

Pre-com-
pression
capacity

(KB)

Compressed
clob capacity

(KB)

Compressed
 blob capacity

(KB)

Compres-
sion time

(s)

Decom-
pression
time (s)

Clob
compres-
sion rate

(%)

Blob com-
pression
rate (%)

Second
data

Bzip2 588.51 37.462 28.096 0.18909 0.02016 6.24 4.68

Gzip 588.51 63.376 47.531 0.03370 0.00692 10.45 7.84

GzipIO 588.51 86.906 65.179 0.01328 0.00633 14.36 10.77

Minute
data

Bzip2 8.842 0.961 0.720 0.00458 0.00113 10.89 8.15

Gzip 8.842 1.399 1.048 0.00100 0.00034 15.76 11.81

GzipIO 8.842 2.008 1.505 0.00035 0.00027 22.62 16.95

Note: The black bold characters refer to smallest compressed capacity, shortest compression and decompression time,
and highest compression rate.

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle Database Art. 8, page 5 of 10

3 LOB data read-write speed test
3.1 Read-write speed test for direct read method
The direct read method are used to test the read-write speed of the four storage structures (three com-
pressed structures + one uncompressed structure). Table 4 shows the read-write speed test result of four
storage structures. (1) The database write speed of GzipIO is the highest for both Clob and Blob, closely fol-
lowed by Gzip, difference between the two is very small. As Bzip2 requires a long compression time, the local
database write speed is much lower than that of others. (2) The database read speed in Bzip2 for Clob and
Gzip for Blob is the highest. Even if it is sometimes slower than other methods, the difference between the
read speed and the highest speed is the smallest. (3) For the same compressed or uncompressed structure,
the database write speed of the two LOB types is basically the same, but the database read speed of Blob is
much higher than that of Clob.

3.2 Read speed test for three LOB read methods
The three LOB read methods are used to test the read speed of the compressed and uncompressed struc-
tures. Table 5 shows the read speed test result of three LOB read methods. (1) For the direct read method,
it has the worst read efficiency in the uncompressed Clob, and its read speed is much lower than that of
other two methods; in the Blob, except for its high local read speed of one-day second data, the other
read efficiencies are almost the worst, and as the number of read days increases, its read speed gap with
the substr+threadPool method is increasingly. (2) For the substr read method, its read speed in uncom-
pressed Clob is significantly higher than that of the direct read method, but it is unstable in the Blob sec-
ond data read, and it is common that its read time is much longer than that of other methods. (3) For the
substr+threadPool method, its read speed is the highest in the uncompressed Clob, far superior to the other
two methods. Even if it is sometimes slower than other methods, the difference between its read speed and
the highest speed is the smallest. (4) No matter what read methods, the read speed of Gzip is higher than
that of GzipIO.

In relative terms, the substr+threadPool method can display the highest database read efficiency com-
pared with the other two methods no matter for Clob or Blob, for compressed or uncompressed. Especially,
its read speed of the uncompressed Clob is greatly higher than that of other two methods. The storage
structure of “Blob+Gzip” combined with the method of “Substr+threadPool read” can make the reading
performance of specific database to be “optimal”.

4 Discussion and conclusion
4.1 Discussion
The tests show that Blob is superior to Clob in storage performance, but the Clob has advantages in improv-
ing the retrieval speed of long text data (Zhang Jing et al, 2011). The above test results once again verify the
conclusion of Zhang Jing et al. Blob is superior to Clob in terms of storage, exchange or read-write speed, but

Table 3: Average data exchange speed test of every record.

Field
type

Compression
algorithm

Second data Minute data

Capacity
of every
record

(KB)

Estimated
exchange

rate

Actual
exchange
time (s)

Actual
exchange

rate

Capacity
of every

ecord
(KB)

Esti-
mated

exchange
rate

Actual
exchange
time (s)

Actual
exchange

rate

Blob
(Binary)

Bzip2 28.09 20.9 0.051 8.97 0.72 12.3 0.043 1.13

Gzip 47.53 12.4 0.058 7.89 1.05 8.4 0.044 1.11

GzipIO 65.18 9.0 0.064 7.14 1.50 5.9 0.044 1.09

Uncompressed 588.51 1.0 0.248 1.84 8.84 1.0 0.045 1.06

Clob
(Ascii)

Bzip2 37.46 15.7 0.068 6.75 0.96 9.2 0.045 1.06

Gzip 63.38 9.3 0.083 5.49 1.40 6.3 0.045 1.08

GzipIO 86.91 6.8 0.106 4.30 2.01 4.4 0.046 1.05

Uncompressed 588.51 0.456 8.84 0.048

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle DatabaseArt. 8, page 6 of 10

Ta
bl

e
4

: R
ea

d-
w

ri
te

 s
pe

ed
 te

st
 re

su
lt

 o
f f

ou
r s

to
ra

ge
 s

tr
uc

tu
re

s.

A
n

in
st

ru
m

en
t

(6
 e

le
m

en
ts

) R
ea

d
an

d
W

ri
te

 t
im

es
(s

ec
on

d)
Se

co
nd

 d
at

a
M

in
ut

e
da

ta

1
 d

ay
31

 d
ay

s
31

 d
ay

s

Lo
ca

l
Re

m
ot

e
Lo

ca
l

Re
m

ot
e

Lo
ca

l
Re

m
ot

e

Fi
el

d
ty

pe
Co

m
pr

es
si

on
 a

lg
or

it
hm

Re
ad

(s
)

W
ri

te
(s

)
Re

ad
(s

)
W

ri
te

(s
)

Re
ad

(s
)

W
ri

te
(s

)
Re

ad
(s

)
W

ri
te

(s
)

Re
ad

(s
)

W
ri

te
(s

)
Re

ad
(s

)
W

ri
te

(s
)

Bl
ob

(B

in
ar

y)
Bz

ip
2

0.
20

1.
21

1.
73

2.
92

5.
36

44
.4

3
39

.9
8

96
.3

2
1.

74
2.

32
26

.7
6

51
.9

3

G
zi

p
0

.1
1

0.
23

1.
6

4
2.

06
2

.9
1

6.
88

3
9

.5
2

63
.9

1
1.

48
1.

37
26

.7
1

49
.9

6

G
zi

pI
O

0.
12

0
.1

4
1.

87
2

.0
4

3.
10

4
.1

1
45

.8
2

6
3

.0
2

1.
56

1.
2

3
26

.7
5

4
9

.9
5

U
nc

om
pr

es
se

d
0.

36
0.

37
4.

63
6.

43
11

.0
2

12
.2

8
19

4.
44

20
0.

60
0

.9
7

1.
40

2
5

.8
3

50
.3

9

Cl
ob

(A

sc
ii)

Bz
ip

2
1.

0
3

1.
23

17
.1

5
3.

01
2

8
.5

4
44

.7
2

5
5

6
10

5.
63

3.
07

2.
14

4
3

.4
2

51
.5

3

G
zi

p
1.

47
0.

24
28

.2
4

2
.1

3
42

.5
2

7.
48

94
4

76
.7

6
2.

83
1.

41
46

.6
7

50
.3

8

G
zi

pI
O

1.
95

0
.1

6
38

.2
1

2.
22

57
.2

9
4

.9
7

12
78

76
.7

1
2

.6
9

1.
3

3
55

.2
1

5
0

.1
4

U
nc

om
pr

es
se

d
11

.9
4

0.
39

24
3.

70
6.

58
37

2.
52

12
.5

8
75

68
20

5.
56

6.
25

1.
58

13
9.

15
50

.8
8

N
ot

e:
 R

ea
d

ti
m

e
=

D
at

ab
as

e
re

ad
 ti

m
e

+
 D

ec
om

pr
es

si
on

 ti
m

e,
 W

ri
te

 ti
m

e
=

Co
m

pr
es

si
on

 ti
m

e
+

 D
at

ab
as

e
w

ri
te

 ti
m

e.
 T

he
 b

la
ck

 b
ol

d
ch

ar
ac

te
rs

 re
fe

r t
o

th
e

hi
gh

es
t r

ea
d-

w
ri

te
 s

pe
ed

 in
 th

e
fo

ur

st
or

ag
e

st
ru

ct
ur

es
.

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle Database Art. 8, page 7 of 10

Ta
bl

e
5

: R
ea

d
sp

ee
d

te
st

 re
su

lt
 o

f t
hr

ee
 L

O
B

re
ad

 m
et

ho
ds

.

A
n

in
st

ru
m

en
t

(6
 e

le
m

en
ts

) R
ea

d
ti

m
es

(s
ec

on
d)

Se

co
nd

 d
at

a
M

in
ut

e
da

ta

1
 d

ay
10

 d
ay

s
31

 d
ay

s
1

 d
ay

10
 d

ay
s

31
 d

ay
s

Fi
el

d
ty

pe
Co

m
pr

es
si

on

al
go

ri
th

m
D

at
ab

as
e

re
ad

m

et
ho

d
Lo

ca
l(

s)
Re

m
ot

e(
s)

Lo
ca

l(
s)

Re
m

ot
e(

s)
Lo

ca
l(

s)
Re

m
ot

e(
s)

Lo
ca

l(
s)

Re
m

ot
e(

s)
Lo

ca
l(

s)
Re

m
ot

e(
s)

Lo
ca

l(
s)

Re
m

ot
e(

s)

BL
O

B

(B
in

ar
y)

Bz
ip

2
di

re
ct

 re
ad

0
.1

9

1.
80

1.

75
14

.7
2

4.
97

36

.5
6

0.
05

7
1.

37
4

0.
52

6
10

.5
1

1.
59

26

.8
4

su
bs

tr
 re

ad
0.

52

6.
85

1.

83
11

.3
3

4.
83

19

.3
9

0.
04

0
0.

95
4

0.
12

4
1.

32
0

.2
5

1.

3
7

su
bs

tr
+

th
re

ad
Po

ol
0.

21

1.
3

3

1.
4

5
5

.4
9

4
.1

8

10
.1

4

0
.0

3
9

0
.9

3
7

0

.1
2

2
1.

13
0.

28

1.
44

G
zi

p
di

re
ct

 re
ad

0
.1

1
1.

74

1.
03

16
.2

6
2.

88

41
.4

9
0.

05
8

1.
42

5
0.

47
6

10
.1

6
1.

52

26
.8

3

su
bs

tr
 re

ad
0.

66

11
.2

5
1.

41
16

.6
3

3.
18

27

.2
2

0
.0

3
5

0.
94

5
0.

06
2

1.
15

0.
11

1.

31

su
bs

tr
+

th
re

ad
Po

ol
0.

14

1.
6

4

0
.8

1
5

.3
7

2
.1

1

8
.5

7
0.

04
1

0
.9

4
0

0
.0

61
1.

11
0

.0
9

1.

2
3

G
zi

pI
O

di
re

ct
 re

ad
0

.1
2

1.

91

1.
09

17
.4

9
3.

08

45
.6

9
0.

06
5

1.
46

0
0.

53
4

10
.2

4
1.

67

27
.2

3

su
bs

tr
 re

ad
0.

88

14
.7

9
1.

71
22

.0
3

3.
79

36

.6
3

0.
04

9
1.

11
0

0.
07

4
1.

36
0.

11

1.
60

su
bs

tr
+

th
re

ad
Po

ol
0.

17

2.
60

0

.9
2

5
.7

9
2

.3
8

9

.0
9

0

.0
4

3
0

.9
5

6
0

.0
6

8
1.

18
0

.1
0

1.

4
8

U
nc

om
-

pr
es

se
d

di
re

ct
 re

ad
0

.3
8

6

.3
4

3

.6
6

70
.0

1
10

.8
9

19
8.

20

0
.0

4
5

1.
41

4
0.

33
2

9.
77

1.
06

26

.1
5

su
bs

tr
 re

ad
6.

69

12
7.

46

12
.5

8
18

5.
94

25
.4

1
30

0.
55

0.

13
1

2.
86

0
0.

19
9

3.
49

0.
32

5.

14

su
bs

tr
+

th
re

ad
Po

ol
0.

79

6.
84

4.

80
2

0
.4

8
10

.7
6

4

0
.0

9

0.
04

9
0

.9
9

2
0

.0
9

9
2

.3
9

0
.2

0

3
.4

9

Cl
ob

(A

sc
ii)

U
nc

om
-

pr
es

se
d

di
re

ct
 re

ad
12

.6
2

24
5.

94

12
1.

31
26

54
.5

3
38

4.
05

75

79
.1

9
0.

22
8

5.
68

1
2.

17
7

54
.2

4
6.

69

14
0.

84

su
bs

tr
 re

ad
4.

19

65
.9

7
13

.6
9

18
6.

07
23

.3
3

35
3.

76

0.
09

4
1.

94
4

0.
22

7
3.

94
0.

44

6.
65

su
bs

tr
+

th
re

ad
Po

ol
0

.5
6

5

.8
5

4

.3
7

18
.4

1
10

.8
7

3

9
.3

4

0
.0

5
2

0
.9

5
8

0
.1

16
2

.0
9

0
.2

6

3
.8

9

N
ot

e:
 R

ea
d

ti
m

e
=

D
at

ab
as

e
re

ad
 ti

m
e

+
 D

ec
om

pr
es

si
on

 ti
m

e.
 T

he
 b

la
ck

 b
ol

d
ch

ar
ac

te
rs

 re
fe

r t
o

th
e

hi
gh

es
t d

at
ab

as
e

re
ad

 s
pe

ed
 in

 th
e

th
re

e
LO

B
re

ad
 m

et
ho

ds
, a

nd
 th

e
bl

ac
k

bo
ld

 b
ox

ed
 c

ha
r-

ac
te

rs
 re

fe
r t

o
th

e
hi

gh
er

 s
pe

ed
 in

 C
lo

b
an

d
Bl

ob
.

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle DatabaseArt. 8, page 8 of 10

the “uncompressed Clob+Ascii” format can use the DBMS_LOB.substr function to read partial data (Obtain
the starting position of each data by separator), and the read speed is much better than the overall read
speed, which Blob cannot achieve because of binary storage. For a specific database, there are very few cases
of reading partial of the data, and a large number of practical applications require overall read (data process-
ing, drawing, downloading, etc.).

The optimal compression algorithm should have the highest compression rate, the highest compression
and decompression speed, which, however, is difficult to achieve in practice. Bzip2 has the highest compres-
sion rate but longer compression and decompression time. Gzip and GzipIO have shorter compression and
decompression time but slightly lower compression rate. Both compression and decompression require good
speed performance. The solutions to these two problems are contradictory. The study of the compression
algorithm is to find the balance between the two and achieve optimal performance (LIU Hong-xia et al, 2010).
Gzip and GzipIO are better than Bzip2 if only the data read-write speed is considered. Compared with GzipIO,
Gzip is superior in read speed, and GzipIO is superior in write speed. The difference between the two in terms
of read-write speed is very small, but the compression rates for minute and second data of Gzip are 5% and
3% higher than those of GzipIO, which saves more storage space for disks and provides faster data exchange.

For the specific database, if the Blob+Gzip storage structure is adopted, the overall capacity of the database
is reduced to 7% (or lower), and the data read-write speed is greatly improved. The second data exchange
rate is at least 7.89 times of the present rate, and the station data can be exchanged to the disciplinary center
in the shortest time, thus improving the time efficiency of the specific data. At present, it takes 1.5 days to
exchange the data from the station to the disciplinary center, and 4 times exchanges per day are generally
performed. After the compressed structure is adopted, more than 24 exchanges per day can be performed
(once per hour), and it will take less than 2–3 hours to exchange the station data to the disciplinary center.

The direct read method is the simplest and most widely used database read method for software develop-
ers, but it is less efficient. The substr read method can read a maximum length of 4000 bytes in Clob and
can read a maximum length of 2000 bytes in Blob. In the case of the same record capacity, the number of
Blob cycles is twice that of Clob, which will lead to reduced read efficiency of Blob. This should be the root
cause for the unstable performance and frequent longer read time than that of other two methods in the
Blob second data read. The substr+threadPool method adopts a multi-thread parallel read technique, which
just makes up for this deficiency, and shows high read efficiency in both Clob and Blob, compressed and
uncompressed.

The disadvantage of the substr+threadPool method is that a large number of database connections are
consumed during reading, and there must be enough connections (Open_Cursors) in the database. Thread
pool management in NET has a default limit of up to 25 threads per available processor, and the max-
imum number of concurrent threads we monitored so far is only 19. That is to say, although the total
number of threads opened at the time of LOB reading may be as high as 200 to 300, but, in fact, only 25
threads can be read concurrently, while the other threads are all in the waiting state. The total number of
Open_Cursors (the national specific oracle database) is set to 30000, so 1200 users can be supported to read
data simultaneously according to this method, and the database access must be under the specific industry
network. This configuration is sufficient to support substr+threadPool method within the specific system.

4.2 Conclusion
Aiming at the problems of huge storage space, low exchange speed and low read-write speed of the current
specific oracle database, the read-write speed and exchange speed tests are performed on the compressed
and uncompressed Clob and Blob data by three compression algorithms, including Bzip2, Gzip and GzipIO
respectively. The read speed test is performed by the direct read, substr read, and substr+threadPool read
techniques. The results show that:

(1) Blob is superior to Clob in terms of storage, exchange, or read-write speed.
(2) �For the specific database, Blob+Gzip is the optimal storage structure of the minute and second

data. The read-write speed is greatly improved, and the overall capacity of the database is
reduced to 7% (or less). The exchange rate of the second data is at least 7.89 times of the
present rate, and the station data can be exchanged to the disciplinary center within 2–3 hours
(currently 1.5 days).

(3) �The simplest and most widely used direct read method by software developers has poor database
read efficiency, while the substr+threadPool technique shows higher database read efficiency no
matter for Clob or Blob, for compressed or uncompressed, which brings a leap-forward improve-
ment in the read speed of LOB data.

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle Database Art. 8, page 9 of 10

Acknowledgements
All the test data in this paper are from the China National Geomagnetic Network Center. We would like to
express our sincere gratitude!

Funding Information
Jointly funded by the Seismic Science and Technology “Spark Program” Specific Project (XH17038) of
China Earthquake Administration and the Basic Scientific Research Project of Gansu Provincial Earthquake
Administration (2013IESLZ02).

Competing Interests
The authors have no competing interests to declare.

Author Informations
Wang Jianjun, male, born in 1975, senior engineer, Master’s degree, engaged in seismic electromagnetic
observation method research and technical management.

Zhao Yingang, male, engineer, Bachelor’s degree, engaged in seismic monitoring and seismic software
research and development.

References
Gilchrist, J. 2008. Parallel data compression with BZip2[J]. Parallel & Distributed Computing & Systems.
Li, B, Long, B-J and Liu, Y. 2015. A Fast Algorithm for Burrows-Wheeler Transform Using Suffix Sorting.

Journal of Electronics & Information Technology, 37(2): 504–508.
Li, L-D, Ma, T-H and You, W-B. 2009. Analysis of common lossless compression algorithm. Electronic Design

Engineering, 17(1): 49–50.
Liu, G. 2008. Earthquake Precursory Data Exchange System Design[D]. Beijing: Institute of Geophysics,

China Earthquake Administration, 1–85.
Liu, H-X and Niu, F-L. 2010. Research and Improvement of Data Compression Algorithm in Real-time

Database. Control and Instruments in Chemical Industr, 37(6): 72–75.
Mccool, M, Robison, AD and Reinders, J. 2012. Chapter 12 – Bzip2 Data Compression. In: Structured

Parallel Programming[M]. Elsevier Inc, 291–297. DOI: https://doi.org/10.1016/B978-0-12-415993-
8.00012-8

Nie, H-M and Zhao, J-M. 2006. Research of Optimum Query Technology on Clob Big Segment in Oracle
Database. Computer Technology and Development, 16(8): 97–99.

Pankratius, V, Jannesari, A and Tichy, WF. 2009. Parallelizing Bzip2: A Case Study in Multicore Software
Engineering[J]. IEEE Software, 26(6): 70–77. DOI: https://doi.org/10.1109/MS.2009.183

Salazar, JS and Sánchez, EA. 2017. Enhanced Parallel bzip2 Compression with Lock-Free Queue[J].
Uniciencia, 31: 37–49.

Seward, J. 2002. The bzip2 and libbzip2 official homepage (http://sources.redhat.com/bzip2/).
Seward, J. 2007. bzip2 and libbzip2, version 1.0.3, a program and library for data compression.
Xie, Y, Wang, H, Liu, X-H, et al. 2015. Research on Data Reading Techniques Based on Big Data Environ-

ment. Computer Technology and Development, 25(2): 113–116.
Xu, X, Ma, G-S and Yu, T. 2009. Research and Improvement on LZW Lossless Compression Algorithm.

Computer Technology and Development, 19(4): 125–127.
Zhang, A-H, He, Y-H and Zhang, J. 2017. Image Compression Coding Algorithm Based on Wavelet and

Fractal Theory. Computer Technology and Development, 27(6): 46–50.
Zhang, H, Zhao, Y-L, Xu, J, et al. 2012. Query Optimization Research on Mass of Data Based on Oracle

Database. Computer Technology and Development, 22(2): 165–167.
Zhang, J and Wang, Y-M. 2011. Research on Application Technology of LOB in Database Application System.

Computer Technology and Development, 21(2): 166–169.
Zheng, C-F. 2011. Research of Several Common Lossless Data Compression Algorithms. Computer

Technology and Development, 21(9): 73–76.
Zhou, K, Zhang, C, Ji, S, et al. 2009. Discussion on the Problems of the Earthquake Precursory Observation

Networks of China. Seismological and Geomagnetic Observation and Research, 30(1): 76–80.
Zhou, K, Jiang, C-H, Ji, S-W, et al. 2010. On the Design of Earthquake Precursor Observation Database

System. Earthquake, 30(2): 143–151.

https://doi.org/10.1016/B978-0-12-415993-8.00012-8
https://doi.org/10.1016/B978-0-12-415993-8.00012-8
https://doi.org/10.1109/MS.2009.183
http://sources.redhat.com/bzip2/

Wang et al: Research of LOB Data Compression and Read-Write Efficiency in Oracle DatabaseArt. 8, page 10 of 10

How to cite this article: Wang, J, Zhao, Y and Liu, G. 2019. Research of LOB Data Compression and Read-Write
Efficiency in Oracle Database. Data Science Journal, 18: 8, pp. 1–10. DOI: https://doi.org/10.5334/dsj-2019-008

Submitted: 12 September 2018 Accepted: 28 January 2019 Published: 08 February 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.

	 OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity
Press.

https://doi.org/10.5334/dsj-2019-008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	1 Test data and research method
	1.1 Test data
	1.2 Minute and second data table structure
	1.3 LOB data compression and decompression method
	1.4 Database connection and LOB read-write method
	1.5 Three LOB read methods

	2 LOB data compression and exchange speed test
	2.1 LOB data compression test
	2.2 LOB data exchange speed test

	3 LOB data read-write speed test
	3.1 Read-write speed test for direct read method
	3.2 Read speed test for three LOB read methods

	4 Discussion and conclusion
	4.1 Discussion
	4.2 Conclusion

	Acknowledgements
	Funding Information
	Competing Interests
	Author Informations
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

