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As a novel recursion neural network, Echo State Networks (ESN) are characterized by strong 
nonlinear prediction capability and effective and straightforward training algorithms. However, 
conventional ESN predictions require a large volume of training samples. Meanwhile, the time 
sequence data are complicated and unstable, resulting in insufficient learning of this network 
and difficult training. As a result, the accuracies of conventional ESN predictions are limited. 
Aimed at this issue, a time series prediction model of Grey Wolf optimized ESN has been pro-
posed. Wout of ESN was optimized using the Grey Wolf algorithm and predictions of time series 
data were achieved using simplified training. The results indicated that the optimized time 
series prediction method exhibits superior prediction accuracy at a small sample size, compared 
with conventional prediction methods.
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1. Introduction
The time series are a group of random variables arranged in time order and has been widely applied in 
our daily life and industry, including commerce, meteorology, finance, and agriculture. To fully understand 
universal laws and provide references to optimized decision-making, great attentions have been invested in 
time series predictions (Rojas and Pomares 2016) (Jiang et al. 2017).

Owing to effects by various factors, time series is usually characterized by significant randomness and 
nonlinearity (Chen et al. 2017). For accurate predictions of time sequence data, various time series predic-
tion models have been proposed. For instance, ARIMA is a conventional linear time series prediction model 
with considerable prediction capability (Liu et al. 2016). However, continuously increasing data size leads to 
increasing size of nonlinear time series data and applications of linear prediction models have been limited. 
In virtue of rapid developments in machine learning and artificial intelligence, novel time series prediction 
models such as neural networks (Chandra 2015) (Wen et al. 2012) and support vector machine (SVM) (Yaseen 
et al. 2016) (Misaghi and Sheijani 2017) (Nieto et al. 2017) (Jaramillo et al. 2017) have been proposed and 
widely applied in nonlinear time series predictions. Ren et al. achieved rapid collections of receptor tem-
perature using the reverse propagation neural network and rapid prediction of collector tube temperature 
based on the data collected (Ren et al. 2016). However, traditional neural networks are prone to fall into 
local optimum and dimensionality disasters due to the uncertainty of their structure. Huang et al. reported 
effective predictions of mammary cancer using the SVM algorithm (Huang et al. 2017). Although the algo-
rithm overcomes the problems of traditional neural network prediction, its sequence suitable for processing 
is limited. Yao et al. proposed a RNN-based double layer mechanism model (denoted as DA-RNN) (Qin et al. 
2017). This model can obtain the long-term time sequence dependency relationship and predict by selecting 
relevant time sequence driving series. This model can obtain the long-term time sequence dependency rela-
tionship and predict by selecting relevant time sequence driving series. The network needs to calculate the 
error gradient in the training process. Because the error ladder method is difficult to train the network, the 
inherent disadvantage of this difficult training limits the wide application of the recurrent neural network 
in practice (Egrioglu et al. 2015). In addition, since the weighting requirements of the training algorithm are 
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continuously updated, and the update process is computationally intensive, the training time of the RNN 
network is increased.

The Echo State Network (ESN) (Sacchi et al. 2007) is a novel recursion network proposed by Jaeger in 2001 
and has been applied in time series predictions. ESN is improved on the basis of the traditional recurrent 
neural network. The network structure is unique. The concept of “reservoir pool” is introduced, which can 
better adapt to the application of nonlinear systems. The network training process uses linear regression 
and has short-term memory function and the network model is simple and fast, has high prediction per-
formance, overcomes the problems of large computational complexity, low training efficiency and local 
optimization in traditional recurrent neural networks, and can be adapted to the processing of time series 
data in practical problems. However, ESN requires a large volume of training samples owing to its unique 
structure and training is difficult in ESN. Meanwhile, reservoir applicability and prediction accuracy in com-
plicated situations needs to be improved. Afterwards, various optimized ESN models have been proposed. 
Qin et al. proposed a novel E-KFM model by combining the KFM algorithm and ESN and applied it for multi-
step prediction of time sequence data (Xiao et al. 2017). The E-KFM model exhibits excellent effectiveness 
and robustness, but did not achieve good optimization results. Qiao et al. reported accurate predictions by 
ESN via optimization of Wout of ESN using particle swarm algorithm (Qiao et al. 2016), and proposed the 
PSO_ESN prediction model. The model improves the prediction performance to a certain extent, but the 
model training time is longer due to the evolution of particles and the number of iterations. Zhong et al. 
reported optimization of double layer ESN by genetic algorithms and applied the optimized model in multi-
area time series prediction (Zhong et al. 2017). The prediction model optimizes the echo state network, 
improves the accuracy of time series prediction, and shortens the prediction time to some extent. However, 
the genetic algorithm has complex coding, many parameters and choices rely on experience, which cannot 
solve the problem of large-scale calculation.

Aimed at this issue, a time series prediction model of Grey Wolf optimized ESN is proposed by introduc-
ing the Grey Wolf algorithm, a swarm intelligence optimization algorithm. First, significance of time series 
predictions and the state-of-the-other studies in this field were introduced. Then, the GWO time series pre-
diction method for ESN was proposed and described in details. Finally, the proposed model is verified based 
on different data sets.

2. Time series prediction method of Grey Wolf optimized ESN
In order to solve issues (e.g., difficult training) in ESN predictions, time series prediction model of Grey Wolf 
optimized ESN is proposed. This method eliminates the issue of difficult training by optimizing Wout using 
the Grey Wolf algorithm and improves the accuracy of ESN prediction. Additionally, experiments demon-
strated significant enhancements of prediction accuracy of the proposed prediction method over different 
time series data sets.

2.1. Echo State Network
ESN is a novel recursion neural network consisting of input layer, hidden layer, and output layer (Lun et al. 
2015) (Han and Mu 2011). As shown in Figure 1, layers are connected to each other via different weight 
matrices. Herein, Win refers to the input weight connection matrix, which is the connection between input 

Figure 1: Echo State Network diagram.
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layer and reservoir; W refers to the internal weight connection matrix, which is the connection between 
reservoir and internal neuron; Wback refers to the feedback weight connection matrix, which is the connec-
tion between output layer and the next output layer; Wout refers to the output weight connection matrix, 
which is the connection between reservoir and output layer. Wout is the only key parameter that requires 
training.

Unlike other neural networks, the hidden layer in this network is replaced by reservoir. Herein, the res-
ervoir consisting of various sparse neurons dynamically connected to each other and it exhibits memory 
capability via performance of weight storage system between neurons. The reserve pool is the core part 
of the ESN network, and its parameters are of great significance to the network, including the size of the 
reserve pool N, the internal connection weight spectrum radius SR of the reserve pool, the input unit scale 
IS and the sparsity degree SD. Among them, the size of the reserve pool N is reflected by the number of 
neurons. The size of the scale N affects the predictive power of the ESN network. In general, the size of N is 
adjusted by the number of data sets. The internal connection weight spectrum radius of the reserve pool is 
a key parameter of the reserve pool, affecting its memory capacity. In general, an ESN network can have a 
stable echo state attribute when 0 < SR <1. Due to the different types of neurons in the reserve pool and the 
different characteristics of the data, the input signal needs to be scaled by the reserve cell input unit size IS 
to be transported from the input layer to the reserve pool. The size of the input unit scale is related to the 
nonlinear data to be processed. The stronger the nonlinearity, the larger the input unit scale. The sparsity 
of the reserve pool SD specifically refers to the proportion of neurons connected in the reserve pool to the 
total number of neurons. In general, when the SD is 10%, the reserve pool can maintain certain dynamic 
characteristics.

The basic equations of ESN are:

			   ( ) ( ) ( ) ( )( )x n 1 n 1 nin back
Xf W u W W y n+ = + + � (1)

			   ( ) ( ) ( ) ( )( )y n 1 n 1 , x n ,out outf W u y n+ = + � (2)

where u(n) = u1(n), u2(n), …, uk(n), x(n) = x1(n), x2(n), …, xN(n), y(n) = y1(n), y2(n), …, yL(n) are input vector, state 
vector, and output vector of ESN, respectively; f and fout are activation functions for internal neurons of pro-
cessing unit and output unit of the reservoir, respectively, and they are generally tanh functions.

2.2. Grey Wolf Optimizer
The Grey Wolf Optimizer (GWO) is a novel swarm intelligence algorithm proposed by Mirjalili in 2014 (Saremi 
et al. 2015) (Rezaei et al. 2018). This algorithm is based on mimicking of social hierarchy and hunting activi-
ties of grey wolf herd. Grey wolves are social animals with strict hierarchy, including α, β, δ, and ω. Herein, 
α is the leader who distribute different tasks (surrounding, hounding, attacking) to individuals of different 
levels to achieve global optimization. In virtue of its simple structure, negligible parameter adjustment 
required, and high effectiveness, the GWO algorithm has been widely applied for function optimizations.

For a population consisting of N grey wolves (X = X1, X2, …, XN), the location of the ith wolf is defined as   
Xi = XI

1, XI
2, …, XI

d and XI
d  refers to the location of the ith wolf is d-dimensional space. The specific hunting 

activity is defined as follows:

				    ( ) ( )* t tiD C X X= − � (4)

				    ( ) ( )  1 A D*iX t X t+ = − � (5)

where A and C are coefficient vectors, t is the iteration number, X(t) is the location vector of a grey wolf, Xi(t) 
is target location vector of the grey wolf, D is the distance between the grey wolf and the prey.

The coefficient vector is defined as follows:

				    1A 2 a a* * r= − � (6)

				    22 *C r= � (7)

				  
—

2
a 2 i*

Max iteration
 

   
 

� (8)

where r1 and r2 are random vectors with values in [0, 1] and a is the iteration factor.
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Grey wolves have a strong prey search capability. α is the leader who command all activities and β and 
δ may participate occasionally. In the GWO algorithm, α is defined as the optimal solution, while β and δ 
can also provide effective target information to α. Therefore, α, β, and δ are the three optimal solutions 
currently and their updated locations are as follows:

				    ( ) ( )1 * t tD C X Xα α= − � (9)

				    ( ) ( )2  * t tD C X Xβ β= − � (10)

				    ( ) ( )3 * t tD C X Xδ δ= − � (11)

				    1 1 *X X A Dα α= − � (12)

				    2 2   *X X A Dβ β= − � (13)

				    3 3  *X X A Dδ δ= − � (14)

				    ( ) ( )1 2 31
3

X X X
X t

+ +
+ = � (15)

where Xα, Xβ, and Xδ are current locations of α, β, and δ, respectively; X(t) is the target location of grey wolf; 
Dα, Dβ, and Dδ are distances from the prey to α, β, and δ, respectively; X(t + 1) refers to the location vector 
with updated searching factor; C and A are random vectors.

2.3. The optimized Echo State Network algorithm
As a key parameter in ESN, Wout is selected by a series of linear regressions of data in the training set. Owing to 
its unique structure, ESN requires a large volume of training samples, making its training highly challenging. 
Therefore, Wout was optimized using the Grey Wolf algorithm and a Grey Wolf optimized echo state network 
algorithm (denoted as the GWO_ESN algorithm) is proposed.

Procedures of the GWO_ESN algorithm are as follows:

a)	 Establish ESN as shown in Figure 1 and initialize the parameters of this network.
b)	 Initialize parameters and location functions and target location functions of α, β, δ, as shown in 

Figure 2. Herein, the initial locations of α, β, δ are fixed and the corresponding parameters are 
C and a, respectively. ω is the wolf at the bottom hierarchy and prey is located in the middle part.

c)	 Calculate the value of fitness function using Eq (16) and compare it with the value of target func-
tion in Step b. Herein, yi is predicted value based on Wout and Eq (2) and y is the practical value.

				    ( )2
1

1
fitness

n

i
i

y y
n =

= −∑ � (16)

Figure 2: Grey wolf’s initial position.
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d)	 If the values of fitness function obtained in Step c are lower than target function values of α, 
β, δ, target function values of α, β, δ are updated to fitness function values.

e)	 Calculate Parameter a in each iteration using Eq (8) and coefficient coefficients (A and C) 
corresponding to α, β, δ using Eq (6) and (7).

f)	 Execute time series transversal and update locations of α, β, δ using Eq (4) and (5). The specific 
updating equations are Eq (9), (10), (11), (12), (13), and (14). Figure 3 shows updated locations 
of grey wolves.

g)	 If the maximized iteration number is not achieved, go back to Step b and repeat the process; if 
the maximized iteration number is achieved, obtain updated locations of α, β, δ and calculate 
the ultimate optimization result (Wout) using Eq (15).

The pseudo code of GWO_ESN:

Algorithm GWO_ESN
Optimize W out

function GWO_ESN (Xi, a, A, C, N, W in, W, W back)
position =initialization (m, dim);
W out=position
do
fitness =ESN (U, Y, M, W out);
If fitness< Xα

fitness = Xα

X1=position
end
if fitness>Xα&&fitness< Xβ

fitness = Xβ

X2=position
end
if fitness>Xα&&fitness> Xβ&& fitness> Xδ

fitness = Xδ

X3=position
end
t=0
for X1, X2, X3

update by Equation (12 13 14)
end for
update a, A, and C
update Xα Xβ Xδ

t=t+1
until (t > Max_iteration)
W out=3/sum (X1 +X2 +X3)
return W out

end function

Figure 3: Grey wolf location update.
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2.4. Time series prediction model of GWO_ESN
In this article, a time series prediction model of Grey Wolf optimized ESN (denoted as the GWO_ESN 
model) combining ESN and the Grey Wolf algorithm is proposed. Herein, Wout of ESN is optimized using 
the Grey Wolf algorithm and the proposed GWO_ESN algorithm is applied in time series predictions. This 
model eliminates the issue of over-large volume of training samples in ESN and improves the prediction 
accuracy.

Step1: �Pre-process the original sequence and obtain de-noising and dimensionality reduced 
normalized data.

Step2: Initialize parameters in ESN and Grey Wolf algorithm.
Step3: Optimize Wout of ESN using the GWO algorithm.
Step4: Predict using ESN based on Wout.

3. Results and discussion
3.1. Background and data
The experiment environment includes Matlab R2014b, Windows 7 Basic, 8G memory, Intel(R) Core(TM) 
i7-4790 CPU @ 3.60 GHz.

In order to better verify the performance of the time series prediction model, this experiment selected 
seven sets of data, of which the first five groups are nonlinear data., including the EEG public EEG 
data EEG, China Statistical Yearbook official website 1999–2008 different influencing factors The 
Shanghai Railway Index in the historical stock index data of the railway passenger traffic volume, China’s 
1985–2011 grain production data 1, 2 and Netease Financial Network 1990/12/20—1991/1/24. The 
latter two groups are chaotic time series data, mainly Lorenz chaotic sequence and Mackey-Glass chaotic 
sequence. The specific nonlinear data set information is shown in Table 1. The chaotic time series is 
defined as follows:

(1) The Mackey-Glass chaotic time series is defined by the following time delay differential equation:

				  
10

0.2 ( )
0.1 ( )

1 ( )
dx x t

x t
dt x t

τ
τ

−
= −

+ −
� (17)

Where x(0) = 1.2, τ = 17, iteratively generates chaotic time series using the fourth-order Runge-Kutta method.
(2) Lorenz chaotic time series
The Lorenz chaotic time series is described by the following three-dimensional ordinary differential 

equations:

				  

/ ( )

/ ( )

/

dx dt a y x
dy dt c z x y
dz dt xy bz

= −⎧
⎪ = − −⎨
⎪ = −⎩

� (18)

When the parameters a = 10, b = 8/3, c = 28, the initial value x (0) = y (0) = z (0) = 1, the sys tem generates 
chaos, which is iteratively generated by the fourth-order Runge-Kutta method. Chaotic time series. The 
delay time and the embedding dimension of the sequence are set as: τ1 = 19, τ2 = 13, τ3 = 12, m1 = 3, 
m2 = 5, m3 = 7.

Table 1: Data set information.

No. Datasets Data Length Training set Testing set

1 Separation of EEG data 5001*1 2000 500

2 Railway passenger traffic 34*8 16 16

3 Food production 1 27*8 13 13

4 Food production 1 10*10 5 5

5 The Shanghai Composite Index 400*7 200 199

6 Mackey-Glass 400*1 200 199

7 Lorenz 600*1 300 299
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3.2. Evaluation standards
To compare accuracies of different prediction models and evaluate performance of the proposed GWO time 
series prediction method for ESN, two evaluation parameters are involved: comparison of fitting of pre-
dicted sequence and actual sequence and mean square error (MSE) of predicted values and actual values. 
The MSE as an evaluation parameter in this study is defined as:

				    ( )2
1SE
ˆ

M

n

i
y y

n
=

−
=
∑ � (19)

where ŷ refers to the prediction value, y refers to the measured value, n refers to the data length.

3.3. Results and analysis
3.3.1. Experiment 1: Fitting of prediction curves by different time series prediction models 

and practical curves
The BP neural network model (Zhai and Cao 2016), the Elman neural network model (Liang et al. 2017), and 
the ESN model (Li et al. 2012), ESN prediction model based on recursive least squares (denoted as RLS_ESN) 
(Chouikhi et al. 2017), PSO optimization based ESN model (denoted as PSO_ESN) (Zhang et al. 2015), and 
the proposed GWO_ESN model were involved in this prediction experiment. The prediction results by these 
five models over the five time series data sets were compared with practical results and to each other in the 
way of fitting graphs.

Figure 4 shows fitting of practical results and prediction results by the five prediction models over 
five data sets. As observed, fitting of practical results and prediction results by the five prediction models 

Figure 4: Comparison of different model predictions.
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follows: GWO_ESN model > PSO_ESN model > RSN model > Elman model > BP model. Herein, prediction 
results by the proposed GWO_ESN model were highly fitted with practical results and the amplitudes were 
relatively small, indicating high prediction accuracy of the proposed model. In terms of different data sets, 
performances of the BP network and the Elman network varied significantly with the data set due to their 
poor structural stabilities. Meanwhile, the Elman network shows advantages in applicability to time series 
cases over the BP network, thus presenting good prediction performance.

Compared with the Elman model and the BP model, the ESN model exhibits excellent prediction accu-
racy in stock data set and EEG data set. As shown in Figure 4 (d) and (e), stock data set and EEG data set 
are characterized by large volume of training samples and predictions by ESN are based on sufficient 
training in these cases. For the other three data sets with relatively small training sample sizes, sufficient 
training cannot be achieved and prediction accuracy of ESN was limited in these cases. On the other 
hand, the GWO_ESN model exhibited good prediction performances in all five cases, indicating strong 
generalization capability of this model. In other words, the GWO_ESN model is applicable for predictions 
of various time series data. Therefore, two conclusions can be drawn. First, fitting effectiveness of the 
ESN model varies significantly with the data set. Second, the GWO-ESN model shows excellent fitting 
effectiveness for all data sets, while the PSO-ESN model is inferior for history data sets but its effec-
tiveness still satisfies the requirement. Additionally, predictions by the PSO-ESN model are significantly 
deviated from practical results for certain data sets. This can be attributed to data characteristics and 
parameter setting.

Experiment 1 demonstrated that fitting efficiency of the proposed GWO_ESN time series prediction 
model is significantly improved compared with the ESN model and the prediction results by the proposed 
GWO_ESN time series prediction model are perfectly aligned with practical results. Therefore, the predic-
tion performance of the proposed GWO_ESN time series prediction model is considered to be optimized. 
Meanwhile, the proposed GWO_ESN time series prediction model is characterized by low time complexity, 
less parameters required, and highly effective algorithm compared with other models.

3.3.2. Experiment 2: MSEs of different prediction models for different data sets
Table 2 summarizes MSE of different data sets by the five prediction models. A low MSE indicates 
good model performance. As observed, MSE of data by the GWO-ESN model is significantly lower than 
that by other models, indicating excellent prediction performance of the GWO-ESN prediction model. 
Additionally, prediction accuracies of the PSO-ESN model and the ESN model are significantly higher 
than those of the BP neural network and the Elman network. Moreover, performances of the BP neu-
ral network model and the Elman network model are unstable and their prediction performances may 
surpass the ESN model and the PSO-ESN model in certain cases, but never the GWO-ESN prediction 
model.

In summary, the proposed GWO_ESN model exhibited excellent prediction performance even at small 
training sample size and it is superior to other models in terms of prediction accuracy. Meanwhile, due to its 
superior structural stability, the ESN network structure shows advantages in prediction based on nonlinear 
data over the BP neural network model and the Elman network model. Additionally, involvement of the 
GWO algorithm makes the proposed model leads to enhanced overall performance in all cases compared to 
the BP neural network model and the Elman network model. Sufficient learning of fluctuating data avoids 
performance degradation induced by any individual parameter.

Table 2: Mean square error comparison.

Number BP Elman ESN RLS_ESN PSO_ESN GWO_ESN

1 0.0357 0.0164 0.0250 0.0303 0.0217 0.0019

2 0.0413 0.0058 0.0306 0.0224 0.0272 6.2226e–5

3 0.0240 0.0253 0.0221 0.0189 0.0189 0.0013

4 0.0464 0.1284 0.0207 0.1023 0.0266 3.84e–6

5 0.2834 0.0887 0.0086 0.0005 0.1241 1.6817e–6

6 0.0362 0.0214 0.0122 0.0056 0.0435 0.0011

7 0.0413 0.0326 0.0237 0.0147 0.1267 2.65e–4
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3.3.3. Experiment 3: Run time of each prediction model under different data sets
Table 3 shows the comparison of the running time of the six predictive models on different datasets. It can 
be seen from the table that the GWO_ESN predictive model has relatively few running times under seven 
different datasets, although in some datasets the model running time is not dominant compared to the 
BP, Elman, and ESN prediction models, but it can be seen from Table 2 that, in the case of ensuring higher 
prediction accuracy, the model has a relatively small running time compared to other optimization models.

4. Conclusions
In this paper, we proposed a GWO_ESN time series prediction model in which Wout of ESN is optimized using 
the Grey Wolf algorithm to solve difficult training issues in ESN induced by. Meanwhile, this model allows 
sufficient learning of fluctuating and nonlinear time series data. Compared with the PSO_ESN model, the 
RLS_ESN model, the ESN model, the BP neural network model, and the Elman network model, the proposed 
model exhibits advantage in prediction accuracy and reliability. In addition, parameters of the reserve pool 
in the ESN network in this experiment are mainly selected through empirical summary and multiple experi-
mental results, and these parameters have certain influence on the experimental results, so find more suit-
able parameters to achieve better. The experimental effect is worthy of further study and discussion. Besides, 
performances of the proposed model for prediction of data distributions in other cases need to be verified.
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