The Challenges of Data Quality and Data Quality Assessment in the Big Data Era

Authors

  • Li Cai School of Computer and Science, Fudan University, No. 220, Han Dan Road, Shanghai School of Software, Yunnan University, No. 2 North Road of Cui Hu, Kunming
  • Yangyong Zhu Shanghai Key Laboratory of Data Science, Fudan University, Shanghai

DOI:

https://doi.org/10.5334/dsj-2015-002

Abstract

High-quality data are the precondition for analyzing and using big data and for guaranteeing the value of the data. Currently, comprehensive analysis and research of quality standards and quality assessment methods for big data are lacking. First, this paper summarizes reviews of data quality research. Second, this paper analyzes the data characteristics of the big data environment, presents quality challenges faced by big data, and formulates a hierarchical data quality framework from the perspective of data users. This framework consists of big data quality dimensions, quality characteristics, and quality indexes. Finally, on the basis of this framework, this paper constructs a dynamic assessment process for data quality. This process has good expansibility and adaptability and can meet the needs of big data quality assessment. The research results enrich the theoretical scope of big data and lay a solid foundation for the future by establishing an assessment model and studying evaluation algorithms.

Downloads

Published

2015-05-22

Issue

Section

Proceedings Papers