
1 Introduction
Following the pace of big data, more and more data will realize sharing and application in the form of DaaS
(Data-as-a-Service). Therefore, more data and information services will emerge on the Internet. What is more,
the collaboration (composition) of multiple web services is required to satisfy users’ complex demands. In
addition, “big data, big service” also brings new technology requirements and challenges for service comput-
ing. In particular, how to achieve an efficient and real-time collaboration of web services has become a key
question in web service composition. Thus, a fast and efficient web service composition execution engine is
the most important technology for meeting the new requirements.

A considerable amount of effort has been carried out on the researching of a web service composition
execution engine. The WS-CDL+ execution engine (Ai, Tang, & Fidge, 2011) achieved completely the speci-
fication standards of WS-CDL. It directly executes WS-CDL+ documents with corresponding configuration
files and realizes scheduling coordination for web services. Kang et al., (2007) proposed a numeric seg-
mentation algorithm for composite services developed using BPEL (Business Process Execution Language)
(Jordan & Evdemon, 2007). In this algorithm, the sub-process was executed in a dispersed form, in which
the concurrency and throughput were all improved. Composite services were divided into different compo-
nent services, and each sub-service was arranged according to its own execution engine (Kang et al., 2011).
Yu (2007) proposed a BPEL execution engine based on P2P. However, this engine did not deal with static
instances. Business processes were arranged and executed based on web services according to domain ontol-
ogy, and the WebFlowAH platform was constructed (Mendes & Paulo, 2009). Narendra and Orriens (2007)
presented a conceptual model that could track the demand changes during web service execution. Park and
Park (2008) adopted the intentional XML data and invoked external services on related nodes. Meanwhile,
they employed an A* heuristic search algorithm to find the optimal trace and greedy algorithm to generate
an efficient solution in a short time. Tsamoura et al. (2011) and Darmstadt et al. (2009) studied the execution
of distributed workflows. The former reduced the response time of multi-pipeline invocations of remote
web services. The latter guaranteed the correctness of control flows from the point of view of security and
realized the communication and data transmission between web services based on “process slip”. The fault
web services were replaced to realize the forward recovery, and Colored Petri Nets (CPNs) were utilized and

PROCEEDINGS PAPER

The Executable Invocation Policy of Web Services
Composition With Petri Net
Dongming Xiang2, Nengfu Xie3, Bingxian Ma1 and Kai Xu1

1	School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
ise_mabx@ujn.edu.cn

2	Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
flysky_xdm@163.com

3	Agricultural Information Institute, the Chinese Academy of Agricultural Science, Beijing, 100081, China
xienengfu@caas.cn

Keywords: Petri net; Web service; Service composition; Invocation sequence; Scientific
computation service

The web service composition execution engine is a critical problem for web service composition.
Based on Petri net and the analysis of structural relationships among web services, the invoca-
tion sequence of web service composition and its related invocation policies are fully studied in
this paper. Also, the executable invocation policies of web service composition are successfully
constructed based on Petri net. Finally, an example of a scientific computation service is given
to validate the effectiveness of this method.

CODATACODATA
II
SS
UU

Xiang, D et al 2015 The Executable Invocation Policy of Web Services
Composition With Petri Net. Data Science Journal, 14: 5, pp. 1-15, DOI:
http://dx.doi.org/10.5334/dsj-2015-005

mailto:ise_mabx@ujn.edu.cn
mailto:flysky_xdm@163.com
mailto:xienengfu@caas.cn
http://dx.doi.org/10.5334/dsj-2015-005

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 2 of 15

represented compensation flows to achieve backward recovery. Finally, an effective algorithm was proposed
to deal with transactional composite service invocation and strategy recovery (Cardinale & Rukoz, 2011).

The above research examples have proposed different execution frameworks of web service composition
or optimized their executive processes from different perspectives. However, most of these are based on
the service process orchestration to schedule services, such as BPEL, rather than considering the real-time
collaborative invocation and problem analysis in web service composition. The main reason for this is that
the research lacks a relatively flexible, describable, and simple formal model of automatic web service com-
position. Correspondingly, it is hard to construct an execution engine (Suzumura, Trent, Tatsubori, Tozawa,
& Onodera, 2008). In addition, because many complicated data associations and structural associations are
presented within web service composition, if the complex semantic associations are taken into account, it
will become more difficult to construct and analyze the logical flow of web services.

In contrast, the complex process logic and structural relationships among web services can be vividly
described by the Petri net of web service composition (Xiang et al., 2012). Many works (Cardinale & Rukoz,
2011; Xiong et al., 2010; Tang et al., 2007; Ding et al., 2008; Tang et al., 2011; Tan et al., 2010) have studied
the modeling and analysis of web service composition based on the Petri net. However, because of the time
complexity of Petri net’s reachability analysis, many works only focused on static modeling, off-line property
analysis, or quantitative evaluation, rather than using the Petri net for dynamic execution and real-time
analysis of web service composition.

Therefore, based on the Petri net description of web service composition, dynamic execution and real-time
scheduling policies are proposed in this paper. First, we discuss description methods of web service composi-
tion and composite web services with Petri net. Then, we concretely analyze structural relationships within
the web service composition and design executable invocation of web service policies based on Petri net.
Finally, an execution engine based on Petri net is constructed for web service composition and composite web
services. In a practical application of web service composition, this paper will provide an effective technical
solution in applying Petri net theory and its relevant analysis method to a real-time execution and analysis.

The rest of this paper is organized as follows. Related concepts and knowledge are introduced in Section
2. Section 3 lists some concepts related to web service. In Section 4, we concretely analyze the possible
structural relationships within web service composition. Section 5 and Section 6 put forward a web service
composition execution algorithm using Petri net and apply this method to a practical instance. Finally in
Section 7 we summarize the work presented in this paper and point out further work.

2 Related Concepts and Knowledge
2.1 PNML+OWL
PNML (Petri Net Markup Language) (Jüngel et al., 2000) stores and describes a Petri net. It is used mainly to
solve the problem of sharing Petri nets among different tools. However, due to the dependence on syntaxes,
it cannot realize the interoperability of Petri nets.

OWL (Web Ontology Language) (McGuinness & van Harmelen, 2011) is a language system, and its theoreti-
cal basis is description logic. It can create ontology by using different attributes, such as an object attribute,
data attribute, and domain attribute. Web information with semantic information in OWL is easy for machines
to understand. OWL inherits the basic way of stating the fact of RDF (resource description frame) and the
hierarchical structure of RDFS (RDF Schema) with classes and properties. By expanding upon these, OWL adds
many new words and overcomes the problem of RDF/RDFS not describing concepts and attributes well.

In our related research (Ma & Xu, 2009; Ma & Xie, 2010), web services and their services composition
have been modeled with Petri net. To be specific, the transition label in PNML represents the information
about web services, such as service name, input and output, etc.; the place label in PNML represents inputs
and outputs of web services; the flow label defines the relations between web services and their inputs or
outputs. In addition, based on the semantic database, we have added some semantic information into the
inputs and outputs of the web services in PNML documents so that the PNML+OWL description of the web
services can be acquired.

2.2 XFire
XFire (Codehaus) is the next framework for Java SOAP (Simple Object Access Protocol). It bridges the gap
between POJO (Plain Old Java Objects) and SOA (service-oriented architecture). Due to the use of a program-
ming interface and its support for web service standards, XFire has a relatively simple service-oriented devel-
opment. It simplifies the process of converting a Java application into web services and provides a simple

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 3 of 15

and feasible way for enterprises to build SOA architectures. By building on a low memory model (STAX), it
has high performance characteristics.

Based on XFire, web services can be invoked instantly. First, using XFire, we generate the web service cli-
ents, and then we invoked the web services by using their methods’ names and input parameters. If the call
result from the web services does not belong to the array type, it should be further analyzed; otherwise, it
is the desired result.

3 Atomic Web Service and Composite Web Service
Web service composition can be categorized as orchestration (Lapadula, Pugliese, & Tiezzi, 2007; Wang, Dai,
Hou, Fang, & Ren, 2009) and choreography (Valero et al., 2009). The general process of an “Orchestrated”
web service composition is that this service composition can be considered as a single atomic web service.
A “Choreographed” web service composition collaboratively invokes each sub-service during its execution.
Sub-services in web service composition can be atomic web services or composite web services.

3.1 Atomic web services
An atomic web service usually refers to a service that has a relatively simple or independent function and pro-
vides single interfaces that meet specific requirements. In addition, an atomic web service can be designed
and deployed based on general industrial standards or techniques, such as XFire (Codehaus).

3.2 Composite web services
Atomic web services can be “orchestrated” or “choreographed” into a composite web service to meet com-
plex user demands. Composite web services are divided into two types according to the mode of the web
service composition, either orchestration or choreography. An orchestration composite web service is con-
sidered to be an atomic web service while a choreography composite web service process structure is a
part of the web service composition. By default, in the rest of this paper, composite web service refers to a
choreography composite service.

During the choreography of composite web services, it is not easy to construct a complex service process
depending only on the data association among services. It is also necessary to use control structures such
as loop structure and choice. A loop control structure is used to control the execution times of sub-services
while a choice control structure affects service selection and execution paths within a chosen structure. The
control structure can be designed as a web service.

In our related work (Ma & Xu, 2009; Ma & Xie, 2010), we placed elements of the Petri net corresponding to
the input and output of atomic web services or orchestration composite services; the transitional elements
correspond to atomic web or orchestration composite services, and the Petri net of a composite web service
can be generated with this method.

Definition 1 (Petri net of composite web services) The Petri net of a composite web service is an 8-tuple
∑ = (S, T, CS, CT, F, CF, M, L), where

(1)	 S is the set of places. A place represents the input, output, precondition, or execution effects of sub-
services in the composite web services;

(2)	 T is the set of transitions. A transition corresponds to an atomic service or an orchestration composite
service;

(3)	 F⊆ (S×T)∪(T×S) is the set of flows;
(4)	 CS is the set of control places. A control place is one input or output of a control condition;
(5)	 CT is the set of control transitions. A control transition represents a loop control condition or a choice

control condition;
(6)	 CF⊆ (CS×CT) ∪ (CT×CS) is the set of control flows;
(7)	 M: S∪CS → {0, 1, 2, …} is the number of tokens in places;
(8)	 L: S → D∪{ τ } is the semantic markup function, where D is the set of classes and instances from one

domain ontology. τ means an empty semantic.

The foundation of a Petri net of a composite web service is the data associations among sub-services and
related structural relationships that determine the basic data flow (F) among services. On the other hand, con-
trol structures in composite web services include control places, control transitions, and control flows. The
control structures influence the services’ flow direction and co-scheduling in the form of a control flow (CF).

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 4 of 15

Figure 1 shows the Petri net of a composite web service, where t1-t7 are transitions that represent atomic
services. L1 and C1 are control transitions. L1 represents the loop condition, which influences the invocation
of t2 and t3. C1 represents the choice condition that determines which web service is to be invoked next.

3.3 Petri net of a web service composition
If we ignore the complex business processes within a composite web service and only regard it as a web
service that meets specific functional requirements and has multi-inputs and multi-outputs, then we further
abstract and obtain the Petri net of a composite web service. Specifically, the initial input of the web service
forms the input place elements in the Petri net, and the users’ end needs become the output place elements
while the whole web service body is represented as a transition element. Afterwards, the abstracted Petri net
model of the composite web service can be obtained.

Based on an abstraction of the Petri net of a composite web service and the data association among web
services, we can get the Petri net and its PNM+OWL description of the web service composition (Xiang et al.,
2012; Ma et al., 2013).

Definition 2 (Petri net of web service composition) The Petri net of a web service composition is a 5-tuple
∑ = (S, T, F, M, L), where

(1)	 S is the set of places. A place corresponds to an input, output, precondition, or execution effect of
some atomic service or the abstracted composite web services;

(2)	 T is the set of transitions. A transition refers to an atomic service or the abstracted composite web
services;

(3)	 F⊆ (S×T)∪(T×S) is the set of flows;
(4)	 M: S∪CS → {0, 1, 2, …} is the number of tokens within places;
(5)	 L: S → D∪{ τ } is a semantic markup function, where D is a set of classes and instances from one

domain ontology. τ means empty semantic.

3.4 Layered service composition architecture
From the basic components perspective, based on the abstraction of composite web services, the web ser-
vice composition system can be treated as 7-layer architecture (Figure 2).

(1)	 Base support layer: this layer supports the deployment, invocation, and registration of the web services;
(2)	 Atomic service layer: this layer contains atomic web services and is the foundation of the design,

orchestration, and invocation services;
(3)	 Composite service layer: this layer contains composite web services;
(4)	 Service abstraction layer: composite web services are abstracted in this layer, which is the foundation

of the service composition;

Figure 1: Petri net of a composite web service.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 5 of 15

(5)	 Service composition layer: web services are composed in this layer according to semantic associations;
(6)	 Service planning layer: the invocation sequence of web services is generated here based on the Petri

net of the web service composition;
(7)	 Service invocation layer: web services are sequential invoked in this layer according to the invocation

sequence of web service composition.

This layered service architecture does not contain control structures in the service composition layer, which
reflects that there are only data associations among the web services based on data flows. However, the com-
posite service layer realizes the integration of the data and control flows based on a concrete service process.
In addition, because the Petri nets at the service abstraction layer are abstracted from (composite) services,
some control structural relationships may exist. This abstracted model does not reflect a real service’s execu-
tion. It only needs to get concrete Petri nets from the composite service layer during the execution of the
composite services.

4 Structural Relationship Among Web Services
In order to invoke each service in web service composition in good order, the relationship among the web
services must first be analyzed. Based on the Petri nets of the web service composition, it is feasible to get
these relationships from the structural relation among the transitional elements of the Petri net.

Figure 2: The layered service composition architecture.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 6 of 15

4.1 Prepositive web services and postpositive web services
Definition 3 (Prepositive web services) For a web service composition and its Petri net model ∑ = (S, T, F,
M, L) for web service ti, the prepositive web services can be defined as Pro (ti) =

• (•ti)-{ti}, i∈{1,2,…,|T|}. If •ti =
Ø, then Pro (ti) = Ø;

Definition 4 (postpositive web services) For a web service composition and its Petri net model ∑ = (S, T,
F, M, L) for web service ti, the postpositive web services can be defined as Post (ti) = (ti

•)•-{ti} , i∈{1,2,…,|T|}. If
ti

•= Ø, then Post (ti) = Ø;
Conclusion 1 In web service composition for web service ti and its prepositive service set Pro(ti), if ∀

tj∈Pro(ti) (i,j∈{1,2,…,|T|},j≠i), then the input-output association between tj and ti can be discovered. Similarly,
for the postpositive service set Post(ti), if ∀ tj∈Post(ti) (i,j∈{1,2,…,|T|},j≠i), then the input-output association
between ti and tj can also be acquired.

4.2 Structural relationships in web service composition
In the Petri nets of web service composition (Chen et al., 2010) or composite web services, it is easy to
analyze and acquire three basic structural relationships from the structural view: sequenced relation-
ships (Sequence), concurrent relationships (Concurrence), and selective relationships (Choice). All of
these constitute the foundation of structural relationships within a web service composition, shown
in Figure 4.

For a Petri net of a web service composition ∑ = (S, T, F, M, L) with a basic structural relationship R belong-
ing to {Sequence, Concurrence, Choice}:

(1)	 Sequenced Relationship
For two web services ti, and tj, the postpositive web service of ti is a nonempty set Post(ti), where
i, j∈{1,2,…,|T|}, and i≠j. If |Post (ti)|=1 and tj∈Post (ti), then the relationship between ti and tj is a
sequenced relationship (Sequence), which can be denoted as <ti, tj>∈Sequence. If the relationships
among t1,t2,…,tn belong to Sequence successively, <t1,t2>,<t2,t3>,…,<tk,tk+1>,…<tn-1,tn>∈Sequence, the cor-
responding expressed sequence of this relationship is t1t2…tn. This is shown as t1 and t2 in Figure 3a.

(2)	 Concurrence Relationship
For web service ti,, i ∈{1,2,…,|T|}, the postpositive web service of ti is a nonempty set Post(ti). If |ti

•|>1,
|Post (ti)|>1, ti1 and ti2∈Post (ti),

•ti1∧•ti2 = φ, then the relationship between ti1 and ti2 is a Concurrence
relationship (Concurrence), which can be denoted as <ti1,ti2>∈Concurrence. Similarly, if there exists a
web service t that satisfies t1,t2,…,tn∈Post(t) and with the condition that the relationship between the
elements of the set {t1,t2,…,tn} is Concurrence, then the corresponding expressed sequence is (t1&t2&…
&tn). This is shown as t2 and t3 in Figure 3b.

Figure 3: The basic structural relationship among web services.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 7 of 15

In addition, from a general perspective, for multiple web services that meet their input parameter
values, if there is no data association among the inputs and outputs of the web services, these web
services are independent of each other and can be identified as concurrence.

(3)	 Selective Relationship
For web service ti,, i∈{1,2,…,|T|}, the postpositive web services of ti is a nonempty set Post(ti). If |ti

•

|=1,|Post(ti)|>1, and ti1 and ti2 all belong to Post(ti), then the relation between ti1 and ti2 is the selective
relationship (Choice), which can be denoted as <ti1,ti2>∈Choice. Similarly, if there exists a web service
t that satisfies t1,t2,…,tn∈Post(t), with the condition that the relationship between the elements of the
set {t1,t2,…,tn} is a selective relationship, then the corresponding expressed sequence is (t1|t2|…|tn). This
is shown as t2 and t3 in Figure 3c.

Theorem 1

(1)	 If <t1,t2,…,tn>∈Sequence, there is only one element order for {t1,t2,…,tn} that satisfies <t1,t2>,<t2,t3>,
…,<tk,tk+1>,…,<tn-1,tn>∈Sequence, |Post(ti)|=1 (i=1,2,…,n-2,n-1), and tk+1 ∈Post(tk), where k =1,2,…,n-2,n-1;

(2)	 If <t1,t2,…,tn>∈Concurrence, ti, tj∈{t1,t2,…,tn}, and i≠j, then <ti, tj>∈Concurrence;
(3)	 If <t1,t2,…,tn>∈Choice, ti, tj∈ {t1,t2,…,tn}, and i≠j, then <ti, tj>∈Choice.

Based on the definition of structural relationships, we can get the basic relational expression (sequence)
between web services and their postpositive services as follows.

Suppose there is a web service ti and its postpositive web service is a nonempty set Post(ti), where Post(ti)={ti1,ti2,…,
tik},and k∈N. According to the three kinds of basic structural relationships, the relational expression between ti

and Post(ti) can be denoted as G(ti,Post(ti)) = tiR(Post(ti)), R∈{Sequence , Concurrence , Choice}.

(1)	 If <ti1,ti2,…,tik>∈Sequence, according to theorem 1, definition 5, and the condition |Post(ti)|>=1, it can
be concluded that |Post(ti)|=1. If tik ∈ Post(ti), then G(ti,Post(ti)) =titik;

(2)	 If <ti1,ti2,…,tik>∈Concurrence, then G(ti,Post(ti))=ti(ti1&ti2&…&tik);
(3)	 If <ti1,ti2,…,tik>∈Choice, then G(ti,Post(ti))=ti(ti1|ti2|…|tik).

If there exists a web service t and many structural relationships in its postpositive service Post(t)(Post(t) ≠ Ø),
the relational sequence between t and Post(t) can be expressed by a nested basic structural relationship. As
for this nested structure, we ignore its detailed and complex relationships and just consider that it only satis-
fies a single specific structural relationship from an overall perspective, which we call the Service Structural
Body (SSB). On this basis, the basic structural relationship can be extended and applied to the web service
and the Service Structural Body. For example, there are a web service t and its postpositive web service set
{t1,t2, t3}. The relationship between t2 and t3 is selective, i.e., <t2, t3>∈Choice; therefore, their relationship
expression (sequence) is (t2|t3). The relationship between t1 and the (selective) Service Structural Body <t2,t3>
is concurrence, which can be denoted by <t1,<t2,t3>>∈Concurrence. Thus their relational sequence can be
expressed as G(t,Post(t))=t(t1&(t2|t3)).

4.3 Control structures in composite web services

(1)	 Loop structural relationship, shown in Figure 4
In the Petri net of a composite web service, the loop controller is Li, t1,t2,…,tn are web services, and
i∈N, Li refers to a control transition which controls(influences) the loop structure body L(t1,t2,…,tn).
In a loop structure body, there exist basic or nested structural relationships. In a Petri net with loop

Figure 4: The loop structure.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 8 of 15

structures, |•Li|=|Li
•|=1. Moreover, we regard the set {tj | tj∈Post (Li)} as the beginning service of the

loop and the set {tk | tk∈Prot (Li)} as the ending service of the loop. The corresponding loop expression
is represented as Loop(t1,t2,…,tn: Li) = (L(t1,t2,…,tn):Li).

(2)	 Selective relationship with choice conditions shown in Figure 5
Suppose the selection controller (conditions) is Ci and t1,t2,…,tn are web services, i∈N, Ci refers to the
control transition that influences the selective execution paths,|•Ci|=|Ci

•|=1, Post(Ci)={t1,t2,…,tn}, and
Pro(Ci) = Ø. The corresponding selection expression is Choice (t1,t2,…,tn: Ci) = (t1|t2|…|tn:Ci).

5 Invocation of Web Service Based on Petri Net
Based on the analysis of the structural relationship and the PNML+OWL of web service composition, the
invocation sequence of the web service composition can be proposed as follows.

5.1 Invocation sequence of web service composition
When considering the complexity of structures of a Petri net of web service composition and its composite
services, it is not easy to achieve an automatic analysis and invocation of web services located in the com-
plex structures. Thus, in order to maintain the structural relationship among the web services and promote
automatic analysis and execution, the web services and their structural relationships should be presented in
the form of symbol sequences called the invocation sequence of web services.

Definition 5 (Invocation sequence of web services) The invocation sequence of web services can be

defined as
1

S Seq(WS) R ()
m

i

i

Seq WS
=

æ ö÷ç ÷ç= = ÷ç ÷÷çè ø


, where WS is a web service set{ti, i=1,2,…,n} and WSi ⊆WS. This

satisfies
1

m

i

i

WS WS
=

=


 and
1

m

i

i

WS
=

=Æ
 , where ti is a web service, Seq(WS) represents the invocation

sequence based on WS, and R represents the structural relationships among the web services. If there
exists some relationship covering WSi, namely R(WSi), then Seq(WSi) = R(WSi); otherwise, there must be a
web service set iWS ¢ that can be covered by some relationship that satisfies i iWS WS¢Ì and R(WSi¢).Then

Si = Seq(WSi) = Seq (R(WSi¢) ∪ WSi¢).

The following is an example of the invocation sequence of web services in Figure 1:

(1)	 S1 = Seq(t2,t3) = Loop (t2,t3:L1) = (t2t3:L1);
(2)	 S2 = Seq(t1, S1) = Sequence(t1, S1) = t1S1;

=>S2 = t1S1 = (t2t3:L1);
(3)	 S3 = Seq (S2,t4) = Concurrence(S2,t4) = (S2&t4);

=>S3 = (S2&t4) = ((t2t3:L1)&t4);
(4)	 S4 = Seq (S3,t5) = Sequence(S3, t5)= S3t5;

=>S4 = S3t5 = ((t2t3:L1)&t4)t5

(5)	 S5 = Seq (t6,t7) = Choice (t6,t7:C1) =(t6|t7:C1);
(6)	 S6 = Seq (S4, S5) = Sequence (S4, S5) = S4S5;

=>S6= S4S5= ((t2t3:L1) &t4) t5 (t6|t7:C1)

After iterating the above six formulas and replacing similar structural relationship expressions, the invo-
cation sequence of the web services is S=Seq(t1,t2,t3,t4,t5,t6,t7)=(t1(t2t3:L1)&t4)t5(t6|t7:C1). In the invocation

Figure 5: The selective structure with choice conditions.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 9 of 15

sequence of the web services, the priority of structural relationships is regulated as: sequence > concur-
rence >choice. In addition, the relational structure for the symbol “(“and”)” should be given a higher
priority.

In conclusion, the main function of the invocation sequence of web services is to reflect the structural
relationship among the web services, describe their execution sequence, and embody the planning results.
Moreover, it can also provide a necessary basis for following coordinate scheduling and execution of multi-
ple web services.

5.2 Invocation scheduling of web services
Definition 6 (Relationship identifier) The relationship identifier R={ ti | Ai | Ci | Li , i=1,2,…,n }, where i is an
integer, ti represents an atomic web service, Ai represents the concurrence relationship, Ci represents the
selective relationship, and Li represents the loop relationship. The invocation scheduling for web services is
given as follows:

Step1: Retrieve the input-output associations among the web services from PNML+OWL;
Step2: Simplify the invocation sequence of the web services by relationship identifiers. The purpose
of this step is to locate the scope of a certain structural relationship so as to schedule web services
in the relationship;
Step3: Extract structural relationships. Based on the specific relationship identifier and the invoca-
tion sequence of web services that were generated in Step 2, the web services are further invoked
according to their structural relationships.

5.3 Invocation condition of choice sequence
Definition 7 (Choice sequence) If there are N sequences, such as S1’, S2’, Sn’, in a selective structure, each
sequence is called a choice sequence.

Each first web service ti1,ti2,…,tik,…,tin can be extracted from sequences S1’,S2’,…,Sn’. Suppose tpik(k=1,2,…,n)
is an input for each first web service, it is associated with the output pj of web service tj. In the web service

composition, it satisfies j

1

t
n

im

m

t· ·

=

=


 and j

1

 t
n

im

m

Pro t
=

()=


, where Pre (tim) is the prepositive service set of

web service tim. The semantic association between pj and pik is reasoned and obtained, and then the selection
is performed as follows:

(1)	 If the semantic association between pj and pik is a parent-son relationship, an instance-class relation-
ship, or a complete equivalence relationship and pj and pik are of consistent data types, then the input
(pj) of web service pj can meet the input (pik)of web service tik, and the sequence Si’ has been chosen.

(2)	 If the semantic association between pj and pik is a parent-son relationship or an instance-class rela-
tionship, then the semantic association between the values of pj and pik should be further judged.
Suppose the value of pj is vpj only if the semantic association of vpj and pik is a parent-son relationship
or an instance-class relationship, then the output pj of web service tj can meet the input pik of web
service tik. Thus, the sequence Si’ has been chosen.

5.4 Invocation policy of structural relationship
Suppose a relationship identifier Ri exists, and its structural relationship is R(t1, t2,…,tj), j ∈N. The invocation
of web services can be treated as follows:

(1)	 Atomic web services, that is Ri∈ {ti ; i =1, 2,…,n}. Invoke each web service directly;
(2)	 Concurrence structure relationship, that is Ri∈ {Ai, i = 1, 2, …, n} and R(t1, t2,…,tj) = (t1&t2&…&tj).

Invoke web service t1, t2, … tj in concurrent threads;
(3)	 Selective structure relationship, that is Ri∈ {Ci, i = 1, 2,..., n} and R(t1, t2,…,tj) = (t1|t2|…|tj). Screen out

the set S of web services that meet the invocation condition of the choice sequence from t1, t2,..., tj,
and then invoke each web service of S in concurrent threads;

(4)	 Selective structure relationship with choice conditions, that is Ri∈ {Ci, i = 1, 2,…, n} and R(t1, t2,…,tj)
=(t1|t2|…|tj: ck), where ck is a choice condition. Screen out set S of the web services from t1, t2,..., tj to
ck and then invoke each web service of S in concurrent threads;

(5)	 Loop structure relationship, that is Ri∈{Li, i = 1, 2,… , n} and R(t1, t2,…,tj) = (L(t1, t2,…,tj) : lk), where
L(t1, t2,…,tj) is its loop structure body. Invoke the web services of L(t1, t2,…,tj) first, and then execute

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 10 of 15

the method that published in the service Lk. According to the return value, subsequently re-invoke
the web services of L (t1, t2,…,tj) constantly until the value is false.

In practice, there may be a nested structural relationship that contains multiple or different kinds of service
structural relationships, just like R (t1, t2,…,tj) =(t1&t2&…&tk&R1), where R1 is a relationship identifier of the
structural relationship R’(tk+1…,tj). Therefore, it is necessary to nest the above invocation policies to deal with
this relatively complex structural relationship.

5.5 Web services composition invocation algorithm based on Petri net

Inputs: invocation sequence and PNML+OWL file of web service composition
Outputs: invocation results of web service composition

Step 1: Extract input-output associations between web services. From the flow relation sets (the “arc” label)
in PNML+OWL, the input-output associations between web services are analyzed and extracted. Then the data
association Hash table (IORelevancyMap) can be further created. Suppose the output pi of web service ti is asso-
ciated with the input pj of web service tj, where i and j are integers, then the corresponding storage format of
the Hash table is key= “ti : pi ”, and value= Hash(key)= “tj : pj”.

Step 2: Simplify web service invocation sequence. For the invocation sequence of web services S, the
character c can be read from left to right in turn. If c is ‘(‘ , c and the following characters are pushed into
a stack until the character that is read from S is ‘)’. If c is ‘)’, characters are popped from the stack until the
character that pops from the stack is ‘(‘. After this, the popped string (characters) that match ‘(‘ with ’)’ are
processed as follows:

(1)	 If the string contains the character ‘&’, the string is denoted as a concurrence structure sequence by
the relationship identifier Ai (i=1, 2,…,k). Ai and its corresponding concurrence sequence t1&t2&...&tn
are added into the Hash table Concurrent Map. The Hash table Concurrent Map is key = Ai and value=
Hash (key)= “t1&t2&...&tn”,

(2)	 If the string contains the character ‘|’ and does not contain the character ‘:’, the string is denoted as a
choice structure sequence by the relationship identifier Ci(i=1,2,…,k). Ci and its corresponding choice
sequence (t1|t2|…|tn) is added into the Hash table ChoiceMap. The hash table ChoiceMap is key =Ci and
value= Hash (key)= “t1|t2|...|tn”;

(3)	 If the string contains the character ‘|’ and character ‘:’, the string is denoted as a selective structure
sequence with choice conditions by the relationship identifier Ci(i=1,2,…,k). Ci and its corresponding
choice sequence (t|t2|…|tn: cj) are added into the Hash table ChoiceMap. The Hash table ChoiceMap is
key = Ci and value= Hash (key)=”(t1|t2|…|tn : cj)”;

(4)	 If the string contains character ‘L’, the string is denoted as a loop structure sequence by the relationship
identifier Li(i=1,2,…,k). Li and its corresponding loop sequence (L(t1, t2,..., tn) : Lj) are added into the Hash
table LoopMap. The hash table LoopMap is key = Li and value= Hash(key)= “(L(t1, t2,..., tn) : Lj)”;

(5)	 If the stack is empty, the character “/”will be appended onto the ending of the extracted string so as to
distinguish each invocation sub-sequence of the web service. The invocation sequence is divided into
several invocation sub-sequences of web services. The structural relationship among these invocation
sub-sequences is the sequenced relation.

Step 3: Invoke web services according to the invocation sequence generated from step 2, and respectively
execute each service structure and its corresponding internal web services.

Suppose the simplified invocation sequence is S’, where i and j are integers and i is not equal to j. After
traversing S’, the relationship identifier R can be extracted in turn. Now invoke the web services as follows.

(1)	 If R∈{ti,i=1,2,…,n}, then according to the data association Hash table IORelevancyMap, the output pj of
web service tj will be discovered, which is associated with the input pi of web service ti. Then the value
of pj can be obtained from the outcome results of tj, which is the input parameter of ti. Afterwards,
according to the acquired interface of ti, the web service ti can be fully invoked. Meanwhile, the cor-
responding execution results will be saved.

(2)	 If R∈{Ai,i=1,2,…,n}, according to the Hash table ConcurrentMap, the value(string) corresponding to
the key Ai can be acquired. Then the concurrence sequences will be parsed from the value, and the

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 11 of 15

same operation will be repeated as in step 3. Meanwhile, each execution process should be placed
into several concurrent threads.

(3)	 If R∈{Ci,i=1,2,…,n}, according to the Hash table ChoiceMap, the value (string) corresponding to the key
Ci can be acquired. Then the selective sequences will be parsed from the values, which are S1’,S2’,…
,Sn’. First, according to the executable condition of selective sequences, the sequences that satisfy
these conditions are added to a set (selectedSet). Second, it is necessary to judge whether Ci has selec-
tive conditions. If these exist, it should retrieve the published method of this selective condition,
and then the selective result will be written into a set (selectedConSet). Finally, after the intersection
between selectedSet and selectedConSet, the same operation will be repeated as in step 3. Meanwhile,
each execution process should be placed into several concurrent threads.

(4)	 If R∈{Li,i=1,2,…,n}, according to Hash table LoopMap, the value (string) corresponding to the key Li
can be acquired. Then the loop structure body and the loop condition will be parsed from the value.
In the following process, the loop structure body will be executed according to step 3, and then the
published method of this loop condition will be invoked. The Boolean value of results determines
whether to re-execute the loop structure.

6 Experiment
We consider a composite web service of scientific computing as an example to specify the above invocation
policy and execution.

There are eight web services in the composite web service of scientific computing (Table 1). The input e1
of web service t1 is equivalent to the output E1 of web service t3. The output e2 of web service t2 is equiva-
lent to the input E2 of web service t3.The output r2 of web service t7 and the input R2 of web service t8 is
a father-son relationship.

The Petri net model of the scientific computing web service is shown in Figure 6, and its invocation
sequence is S= (t1&t2) t3 (t5 (t7t8:L1)|t6t9:C1).

In Figure 6, C1 is a selective condition of web service PowerService and web service AbsServcie. The cor-
responding method of C1 is choice (double e1, double e2) and its returned value is an integer, where e1 is an
output of web service AddService and e2 is an output of web service SubstractService. L1 is a selective condi-
tion of web service SinService and web service CosService. The corresponding method of C1 is is End (double
p1, double r3) and its returned value is a Boolean value, where p1 is the user’s input parameter and r3 is an
output of web service CosService.

From the scientific computing service Petri net, the structural relationship among the web services can be
analyzed as follows: (1)<t1, t2>∈Concurrence; (2)<t5, t7>∈Sequence; <t7,t8>∈Sequence; <t6, t9>∈ Sequence;
(3)<t5, t6>∈Choice.

The detailed experimental procedure is described as follows:

(1)	 Import a semantic file (Computing Service.owl) and the corresponding PNML+OWL document;
(2)	 Parse PNML+OWL and construct the data association hash table IORelevancyMap (Table 2),

ID web service Function Input Output

t1 AddService Addition a;b e1

t2 SubstractService Substraction c;d e2

t3 MultiplicationService Multiplication E1;E2 r

t5 PowerService Square r r1

t6 AbsService Absolute value r r4

t7 SinService Sine r1 r2

t8 CosService Cosine R2 r3

t9 SqrtService Square root r4 r5

Table1: The details of computing service.

t3.The
Service.owl

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 12 of 15

The mapping table between ID and name is as in Table 3;

(3)	 Get a simplified sequence S’=A1/t3C1/ by simplifying the invocation sequence of web service (S);
(4)	 According to the relationship identifier of S’ and the corresponding invocation policies, invoke web ser-

vices in turn. The execution order of web services is: t2->t1->t3->t5->t7->t8->L1->t7->t8->L1- >t7- >t8.

From the execution time coordinate picture of web services shown in Figure 7, the users interaction restricts
the total execution time. The loop condition is executed 3 times, in which SinService (t7) and CosService (t8)
are also invoked 3 times. AbsService (t6) and SqrtService (t9) are not invoked, which means that the selective
structure has choose PowerService (t5) as the executable web service rather than AbsService. In addition, in
the time slot 0–750ms, SubstractService (t2) and AddService (t1) are invoked during the same time period,
which reflects the concurrence relationship between the web services.

Figure 6: Scientific computing service Petri net.

ti:pi t3:P6 t3:p7 t5:P9 t6: P11 T7: P13 t8: P15 t9: P17
tj:pj t1:P2 T2: P5 t3: P8 t3:P8 T5: P10 t7: P14 t6: P12

Table 2: Data association hash table.

ID P2 P5 P6 p7 P8 P9 P10 P11 P12 P13 P14 P15 P17

name e1 e2 E1 E2 r r r1 R r4 r1 r2 R2 r4

Table 3: The mapping table between ID and name.

Figure 7: The web services execution time coordinates.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 13 of 15

In conclusion, the whole execution of the scientific computing service fully corresponds to the execution
flow of the invocation sequence of web services. The execution order and results are correct, and it reflects
the structural relationship among the executable web services, which further validates the correctness and
effectiveness of this method (Table 4).

7 Conclusion
In this paper, the invocation policies of web service composition have been concretely studied. Based on the
Petri net of web service composition, the structural relationships are defined and analyzed. Then the corre-
sponding invocation scheduling policies are proposed to describe different structural relationships. Finally,
a web service composition execution algorithm is put forward based on Petri net, which can realize the
orderly invocation of services within a web service composition. In a nutshell, this study is a good attempt to
apply Petri net theory and its analysis methods to the execution of a web service composition.

Further research work may include:

(1)	 Extending the instance range to more applications so as to validate the effectiveness of this method
and improve its performance.

(2)	 Based on the results of this paper and exceptions collected during the execution of web service com-
position, further study will focus on running fault detection and its analytical policies with Petri net.

8 Acknowledgements
This work was supported by National Natural Science Foundation of China (60903099).

service ID Service name Input name & value Output name & value

t2 SubstractService c(4.0) d(1.0) e2(3.0)

t1 AddService a(8.0) b(3.0) e1(11.0)

t3 MultiplicationService E1(11.0) E2(3.0) r(33.0)

t5 PowerService r(33.0) r1(1089.0)

t7 SinService r1(1089.0) r2(0.9055)

t8 CosService R2(0.9055) r3(0.6172)

t7 SinService r1(1089.0) r2(0.9055)

t8 CosService R2(0.9055) r3(0.6172)

t7 SinService r1(1089.0) r2(0.9055)

t8 CosService R2(0.9055) r3(0.6172)

Table 4: The execution result table.

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri NetArt. 5, page 14 of 15

9 References
Ai, L., Tang, M., & Fidge, C. (2011) Partitioning composite Web services for decentralized execution using

a genetic algorithm penalty-based genetic algorithm. Future Generation Computer Systems 27(3), pp
157–172.

Cardinale, Y., & Rukoz, M. (2011) A framework for reliable execution of transactional composite Web services.
Proceedings of the International Conference on Management of Emergent Digital Ecosystems, New York,
USA, pp 129–136.

Chen, S., Feng, Z., & Wang, H. (2010) Service Relations and Its Application in Services Oriented Computing.
Chinese Journal of Computers 33(11), pp 2068–2083.

Codehaus. xfire. Retrieved from the World Wide Web January 5, 2015: http://xfire.codehaus.org/.
Darmstadt, C. R., Kuntze, N., & Velikova, Z. (2009) Secure Web Service Workflow Execution. Electronic Notes

in Theoretical Computer Science (ENTCS) 236, pp 33–46.
Ding, Z., Wang, J., & Jiang, C. (2008) An Approach for Synthesis Petri Nets for Modeling and Verifying Com-

posite Web service. Journal of Information Science and Engineering 24(5), pp 1309–1328.
Jordan, D., & Evdemon, J. (2007) Web services Business Process Execution Language Version 2.0[DB/OL].

Retrieved from the World Wide Web January 5, 2015: http://docs.oasis-open.org/wsbpel/2.0/OS/wsb-
pel-v2.0-OS.html,

Jüngel, E. K., & Weber, M. (2000) The Petri net markup language. Petri Net Newsletter 59, pp 24–29.
Kang, Z., Wang, H., & Hung, P. CK. (2007) WS-CDL+: An Extended WS-CDL Execution Engine for Web service

Collaboration. In IEEE International Conference on Web Services (ICWS 2007).
Kang, Z., Wang, H., & Hung, P. CK. (2007) WS-CDL+ for Web service Collaboration. Information Systems Fron-

tiers 9(4), pp 375–389.
Lapadula, A., Pugliese, R., & Tiezzi, F. (2007) A Calculus for Orchestration of Web Services. In Programming

Languages and Systems, LNCS, 4421, pp 33–47.
Ma, B., Xiang, D., & Zhang, Z. (2013) Automatic Generation of Petri Net for Web services Composition. Jour-

nal of Chinese Computer Systems 34(2), pp 332–337.
Ma, B., & Xie, N. (2010) From OWL-S to PNML+OWL for Semantic Web Services. Second International Confer-

ence on Computer Modeling and Simulation, Sanya, China, pp 326–328.
Ma, B., & Xu, Y. (2009) Integrating PNML with OWL for Petri Nets. 2nd IEEE International Conference on Com-

puter Science and Information Technology, pp 228–230.
McGuinness, D., & van Harmelen, F. (2011) OWL Web Ontology Language Overview [DB/ OL]. Retrieved from

the World Wide Web January 5, 2015: http://www.w3.org/TR/owl-features/
Mendes, R., & Paulo, F. P. (2009) WebFlowAH:An Environment for Ad-Hoc Specification and Execution of

Web Services-based Processes. Proceedings of the 2009 ACM symposium on Applied Computing, New York,
USA, pp 692–693.

Narendra, N. C., & Orriens, B. (2007) Modeling Web service composition and execution via a requirements-
driven approach. In Proceedings of the ACM Symposium on Applied Computing (SAC), Seoul, Korea,
pp1642–1648.

Park, C., & Park, S. (2008) Efficient execution of composite Web services exchanging intentional data. Infor-
mation Sciences 178(2), pp 317–339.

Suzumura, T., Trent, S., Tatsubori, M., Tozawa, A., & Onodera, T. (2008) Performance Comparison of Web
Service Engines in PHP, Java and C. IEEE International Conference on Web Service (ICWS), pp 385 – 392.

Tan, W., Fan, Y., Zhou, M., & Tian, Z. (2010) Data-Driven Service Composition in Enterprise SOA Solutions: A
Petri Net Approach. IEEE Transactions on Automation Science and Engineering 7(3), pp 686–694.

Tang, X., Jiang, C., Ding, Z., & Wang, C. (2007) A Petri Net-Based Semantic Web Service Automatic Composi-
tion Method. Journal of Software 18(12), pp 2991–3000.

Tang, X., Jiang, C., & Zhou, M. (2011) Automatic Web service composition based on Horn clauses and Petri
nets. Expert Systems with Applications 38(10), pp 13024–13031.

Tsamoura, E., Gounaris, A., & Manolopoulos, Y. (2011) Decentralized execution of linear workflows over Web
services. FutureGenerComput System, 27(3), pp 341–347.

Valero, V., Cambronero, M. E., Díaz, G., et al. (2009) Petri net approach for the design and analysis of Web
Services Choreographies. The Journal of Logic and Algebraic Programming 78, pp 359–380.

Wang, Y., Dai, G., Hou, Y., Fang, J., & Ren, X. (2009) Verification of Web Service Orchestration Based on Con-
current Transaction Logic. Chinese Journal of Electronics 37(10), pp 2228–2233.

http://xfire.codehaus.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/owl-features/

Xiang et al: The Executable Invocation Policy of Web Services Composition With Petri Net Art. 5, page 15 of 15

Xiang, D., Ma, B., & Zhang, Z. (2012) Automatic Sharing Synthesis of Petri Nets Based on Semantic. Journal of
System Simulation 24(11), pp 2237–2242.

Xiong, P., Fan, Y., & Zhou, M. (2010) A Petri Net Approach to Analysis and Composition of Web Services. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40(2), pp 376–387.

Yu, W. (2007) Peer-to-Peer Execution of BPEL Processes. The 19th International Conference on Advanced Infor-
mation Systems Engineering, CAISE:Trondheim, Norway.

How to cite this article: Xiang, D, Xie, N, Ma, B and Xu, K 2015 The Executable Invocation Policy of Web Services
Composition With Petri Net. Data Science Journal, 14: 5, pp. 1-15, DOI: http://dx.doi.org/10.5334/dsj-2015-005

Published: 22 May 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/3.0/.

 	 OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity
Press.

http://dx.doi.org/10.5334/dsj-2015-005
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	OLE_LINK18
	OLE_LINK19
	OLE_LINK55
	OLE_LINK56
	OLE_LINK59
	OLE_LINK60
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK31
	OLE_LINK30
	OLE_LINK73
	OLE_LINK74
	OLE_LINK11
	OLE_LINK12
	OLE_LINK13
	OLE_LINK32
	_GoBack
	OLE_LINK14
	OLE_LINK15

