A Personalization-Oriented Academic Literature Recommendation Method
DOI:
https://doi.org/10.5334/dsj-2015-017Keywords:
Recommendation system, Personalization, Optimization, Content-based recommendationAbstract
As the number of digital academic items increases dramatically, it is more and more difficult for a student or researcher to find the expected references in a large academic literature database. Although collaborative filtering and content-based recommendation approaches perform well in some applications, they do not produce satisfactory recommendations for academic items because they fail to reflect researchers’ unique characteristics in terms of authority, popularity, recentness, etc. In this paper, we propose two novel data structures, ALVector, which expresses various objective attributes of an article, and AUVector, which expresses users’ subjective weights for different attributes. Then, we propose a novel personalization-oriented recommendation method that utilizes both the content and non-content attributes in ALVector and AUVector for making recommendations. In order to make the overall best recommendation, the VIKOR algorithm is used with a personalization-oriented method to achieve a compromise solution. A real-world literature data set is used in the experiments. The experimental results show that our method better meets the user’s preference in multiple dimensions simultaneously.
Published
Issue
Section
License
Copyright (c) 2015 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms. If a submission is rejected or withdrawn prior to publication, all rights return to the author(s):
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Submitting to the journal implicitly confirms that all named authors and rights holders have agreed to the above terms of publication. It is the submitting author's responsibility to ensure all authors and relevant institutional bodies have given their agreement at the point of submission.
Note: some institutions require authors to seek written approval in relation to the terms of publication. Should this be required, authors can request a separate licence agreement document from the editorial team (e.g. authors who are Crown employees).