DATA SCIENCE Hester, J R 2016 A Robust, Format-Agnostic Scientific Data Transfer Framework.
S JOURNAL Data Science Journal, 15: 12, pp.1-17, DOI: http://dx.doi.org/10.5334/dsj-2016-012

RESEARCH PAPER

A Robust, Format-Agnostic Scientific Data Transfer
Framework

James R. Hester

Australian Nuclear Science and Technology Organisation Locked Bag 2001, Kirrawee DC NSW 2232, Australia
jxh@ansto.gov.au

The olog approach of Spivak and Kent (PLoS ONE 7, 1 (2012) p €24274) is applied to the practi-
cal development of data transfer frameworks, yielding simple rules for construction and assess-
ment of data transfer standards. The simplicity, extensibility and modularity of such descrip-
tions allows discipline experts unfamiliar with complex ontological constructs or toolsets to
synthesise multiple pre-existing standards, potentially including a variety of file formats, into
a single overarching ontology. These ontologies nevertheless capture all scientifically-relevant
prior knowledge, and when expressed in machine-readable form are sufficiently expressive to
mediate translation between legacy and modern data formats. A format-independent program-
ming interface informed by this ontology consists of six functions, of which only two handle
data. Demonstration software implementing this interface is used to translate between two
common diffraction image formats using such an ontology in place of an intermediate format.

Keywords: metadata; ontology; knowledge representation; data formats

1 Introduction

For most of scientific history, results and data were communicated using words and numbers on paper, with
correct interpretation of this information reliant on the informal standards created by scholarly reference
works, linguistic background, and educational traditions. Modern scientists increasingly rely on computers
to perform such data transfer, and in this context the sender and receiver agree on the meaning of the data
via a specification as interpreted by authors of the sending and receiving software. Recent calls to preserve
raw data (Boulton 2012; Kroon-Batenburg & Helliwell 2014) and a growing awareness of a need to manage
the explosion in the variety and quantity of data produced by modern large-scale experimental facilities
have led to an increase in the number and coverage of these data transfer standards. Overlap in the areas
of knowledge covered by each standard is increasingly common, either because the newer standards
aim to replace older ad hoc or de facto standards, or because of natural expansion into the territory of
ontologically “neighbouring” standards. One example of such overlap is found in single-crystal diffrac-
tion: the newer NeXus standard for raw data (NIAC 2015) partly covers the same ontological space as the
older imgCIF standard (Bernstein 2006), and both aim to replace the multiplicity of ad hoc standards for
diffraction images.

Authors of scientific software faced with multiple standards generally write custom input or output mod-
ules for each standard. For example, the HKL suite of diffraction image processing programs accepts over
300 different formats (Otwinowski & Minor 2016). In such software, broadly useful information on equiva-
lences and transformations is crystallised in code that is specific to a programming language and software
environment and is therefore difficult for other authors faced with the same problems to reuse, even if code
is freely available. Such uniform processing and merging of disparate standards has been extensively studied
by the knowledge representation community: it is one outcome of ‘ontological alignment’ or ‘ontological
mapping’, which has been the subject of hundreds of publications over the last decade (Otero-Cerdeira,
Rodriguez-Martinez, & Gomez-Rodriguez 2015). Despite the availability of ontological mapping tools, Otero-
Cerdeira, Rodriguez-Martinez, & Goémez-Rodriguez note that relatively few ontology matching systems are

http://dx.doi.org/10.5334/dsj-2016-012
mailto:jxh@ansto.gov.au

Art. 12, page2 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

put to practical use (see their section 4.5). One barrier to adoption is likely to be the need for the discipline
experts driving standards development to learn ontological concepts and terminology in order to evalu-
ate and use ontological tools: the effort required to master these tools may not be judged to yield com-
mensurate benefits in situations where communities have historically been able to transfer data reliably
without such formal approaches. Introduction of ontological ideas into data transfer would therefore stand
more chance of success if those ideas are simple to understand and implement, as well as offering tangible
benefits over the status quo. Indeed one of the challenges noted by Otero-Cerdeira et al is to “define good
tools that are easy to use for non-experts”.

Much of the research listed by Otero-Cerdeira et al has understandably been predicated on reducing
human involvement in the mapping process, although expert human intervention is still currently required.
In contrast to the thousands of terms found in ontologies tackled by ontological mapping projects, data
files in the experimental sciences usually contain information relating to a few dozen well-defined scientific
concepts, and so manual handling of ontologies is feasible. The present paper therefore adopts the practical
position that, if involvement of discipline experts is unavoidable, then the method of representing the ontology
should be as accessible as possible to those experts. An easily-applied framework for scientist-driven
formalisation, development and assessment of data transfer standards is presented, aimed at minimising
the complexity of the task, while promoting interoperability and minimising duplication of programmer
and domain expert effort.

After describing the framework in Section 2, we demonstrate the utility of these concepts by discussing
schemes for standards development (Section 3) and semiautomatic data file translation (Section 4).

2 A conceptual framework for data file standards
The framework described here covers systems for automated transfer and manipulation of scientific data. In
other words, following creation of the reading and writing software in consultation with the data standard,
no further human intervention is necessary in order to automatically create, ingest, and perform calcula-
tions on, data from standards-conformant data files. Note that simple transfer of information found in the
data file to a human reader, for example, presentation of text or graphics, is of minor significance in this
context, as such operations, while useful, do not require any interpretation of the data by the computer and
are in essence identical to traditional paper-based transfer of information from writer to reader.
Terminology used in this paper is defined in Table 1. The process of scientific data transfer is described
using these terms as follows: in consultation with the ontology, authors of file output software determine
the required or possible list of datanames for their particular application, then correlate concepts handled
by their code to these datanames, arranging for the appropriate values to be linked to the datanames within
the output data format according to the specifications within the format adapter. A file in this format is then

Term Description

Dataname a name for a concept with which one or more values can be associated

Data item a single item of information, consisting of a dataname and one or more associated data
values

Ontology A collection of datanames and associated meanings, including relationships. Once 'ologs’
have been defined (section 2.1), 'ontology’ usually refers to an ontology expressed using an
olog.

Data format The structures in which the data are encapsulated for transfer, for example XML or HDF5.

Informal discussions often use the word 'format’ to encompass both the file format and the
ontology used to interpret the dataitems found in it. To avoid confusion, the word 'format’
is here used to refer only to the file structure.

Data bundle A collection of data items

Dataname list The subset of datanames from an ontology that are included in a given data bundle

Format adapter A description of how the values associated with datanames are encoded in a particular data
format

Transfer specification ~ The combination of a format adapter with a dataname list

Table 1: Definitions of terms used in this paper.

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art.12, page 3 of 17

transferred or archived. At some point, software written in consultation with the same format adapter and
ontology extracts datavalues from the file and processes them correctly.

Following Shvaiko & Euzenat (2013), the word ‘ontology’ as used in this paper refers to a system of
interrelated terms and their meanings, regardless of the way in which those meanings are represented
or described. Under this definition, Table 1 is itself an ontology for use solely by the human reader in
understanding the present paper. An ontology may be encoded using a language such as OWL (Hitzler et al.
2012) to produce a human-and machine-readable document allowing some level of machine verification,
deduction and manipulation.

This paper makes frequent reference to two established data transfer standards in the area of experimental
science: the Crystallographic Information Framework (CIF) (Hall & McMahon 2005) and the NeXus standard
(Konnecke et al. 2015).

2.1 Constructing the ontology

In general, a complete data transfer ontology for some field would include all of the distinct concepts and
relationships used by scientific software authors in the process of constructing software, including scientific,
programming, and format-specific terminology. A clear dividing line may be drawn between the scientific
components of the ontology and the remainder, by relying on the assertion that scientific concepts and their
relationships are dictated by the real world, not by the particular arrangement in which the data appear,
that is, a scientific ontology may be completely specified independent of a particular format. Furthermore, the
scheme presented below assumes that the scientific knowledge informing the ontology is already shared by
the software authors implementing the standard. These software authors are one of the main consumers of
the ontology, so we do not require the level of machine-readability offered by ontology description languages
such as OWL,; rather we seek the minimum level of sophistication necessary to describe to a human the
correct interpretation of the data, while at the same time including properties that allow coherent expansion
and curation of the ontology. Such ontologies should be maximally accessible to experts in the scientific
field who are not necessarily programmers or familiar with ontological constructs, in order to allow broad-
based contribution and review.

A suitably simple but powerful system for expressing ontologies has been presented by Spivak & Kent
(2012), who propose using category-theoretic box and arrow diagrams which they call ologs (from “ontology
logs”). A concept in an ontology is drawn as an arrow (aspect’) between boxes (‘types’): the arrow denotes
a mapping between elements in the sets represented by the boxes. A simple ontology written using this
approach is shown in Figure 1, which might be used to describe a datafile containing the values of neutron
cross-section. This olog shows that the concept ‘measured neutron scattering cross-section’ maps every
atomic element to a value in barns. We can therefore specify “measured neutron scattering cross-section” as a
(domain, function, codomain)'tripleof({element names}, ‘cross-section measurement’,{(r,“barns”):
r € R}). Each of the datanames in our ontology is associated with such a triple, so that the values that the
dataname takes are the results of applying the associated function to each of the elements of the domain.
Given this formulation of an ontology, it follows that the scientifically useful content of a datafile consists
solely of the values taken by the datanames in their codomains, and the matching domain values. In other
words, a datafile documents an instance of the olog.

Such a functional formulation of a scientific area is generally trivially available. For example, when the
result of applying the function might not be known for all elements of the domain, we can augment the
codomain with a ‘nul1’ value (Henley 2006). Where the function requires several parameters in order to
determine uniquely an element of the codomain, we simply define the domain to be a tuple of the appropri-
ate length. Where a concept would map a single domain element to multiple values and we cannot invert
the direction of the relation, the codomain can be defined to consist of tuples. The identity function applied
to a type also creates a dataname, which identifies objects of that type: for example “element name’, “meas-
urement number” or “detector bank identifier”.

It is useful to visualise the collection of datanames that are functions of the same domain as forming a
table; a row in this table describes the mappings of a single value from the domain into the codomains of the
other datanames. Indeed, an olog is trivially transformable to a relational database schema (Spivak 2012), in
which case datanames are equivalent to database table column names. Note that this close link to relational

! Note that domain’ and codomain’ are used throughout in the mathematical sense, as the set on which a function operates, and
the set of resulting values, respectively.

Art. 12, page4 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

has name
Has measured
neutron scattering
cross-section)
An element > An area in barns

Figure 1: A simple ontology using the olog formalism.

databases in no way requires us to use a relational database format for data transfer, although a relational
database may serve as a useful baseline against which to compare the chosen data format.

As the above description is potentially too technical to meet our stated aims of broad accessibility, we
may instead describe an olog as a collection of definitions for datanames, where each definition meets the
following requirements:

a description a description of the concept sufficient for a human reader to unambiguously
reconstruct a mapping between the one or more related items and the value type. Every unique
collection of values for related items must map to a single value of value type.

value type (the codomain of the function). While the particular discipline will often determine the
types of values, a versatile and generally suitable set of core value types might consist of: numeric
types (integer,real,complex), finite sets of alternatives (numerical or text), and homogeneous
compound structures composed of such values (arrays, matrices). Units should be specified where
relevant. Free-form text is useful when constructing an opaque identifier (e.g. sample name),
although in other contexts it will not be machine interpretable.

related items dataname(s) that this item maps from (collectively forming the domain of the
function)?. This includes all names which participate in determining the behaviour of the mapping,
for example, it includes all parameters influencing a model calculation. If it is not possible to identify
a unique value for the dataname given only the specific values of the datanames in this list, then
the related items list is incomplete. In order to completely insulate users of the specification from
expansions in the ontology, once defined this list of related items cannot change (see section 2.1.1).

As expected, an ontology constructed according to the above prescription is completely decoupled from the
file format. Any discipline specialist able to provide the above information can contribute to the ontology
regardless of programming skill, thus broadening the base of contributors.

Although our objective is to provide an ontology that is easy for non-programmers to contribute to,
there is some advantage to producing a computer-readable version of the ontology, which might contain
additional validation information, e.g. range limits on values, that are otherwise only provided in human-
readable form (perhaps implicitly) in a plain-text ontology. An olog could, for example, be encoded in the
popular machine-readable OWL formalism by specifying an OWL “class” for each olog “type” and creating
OWL “functional object properties” for each olog aspect (that is, a dataname is an OWL functional object
property linking two OWL classes). OWL terms for restricting value ranges would be used to further describe
each OWL class. In general, a restricted and well-chosen vocabulary for the machine-readable ontology
will also prompt the ontology author to include useful information that might otherwise be assumed
(for example, restricting a range to positive non-zero numbers). The extended example in Section 4.3
shows how information presented in a machine-readable ontology can be leveraged for automatic format
conversion.

Note that a definition may also stipulate default values. As a reasonably large ontology may contain several
alternative routes for reaching a given value (indeed, the notion of path equivalence is a defining feature of
ologs and mathematical categories), some care should be taken when stating default values to ensure that
they match up with those stated for dependent items.

2 More strictly, datanames, the codomains of which this dataname maps from.

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art. 12, page5 of 17

2.1.1 Expanding ontologies

To be useful in the long term, a scientific ontology must be able to gracefully incorporate new scientific
discoveries and concepts. In our simple ontological scheme, such expansion is accomplished by addition of
new types and aspects. Addition of a new aspect between existing types is clearly unproblematic. Addition of
a new type (accompanied by an identifier dataname) may, however, include the assertion that a previously-
defined dataname is additionally or instead dependent on the newly-defined type. This would potentially
impact on all software produced prior to the change, as calculations in older software would not take into
account the effect of the new type. As such an impact is almost always undesirable, a fundamental rule
should be adopted that the list of dependencies of a dataname may never change. Instead, in this scenario a
duplicate of the original dataname should be introduced that includes the new dependency, with the addi-
tion of any appropriate functional mappings involving the new and old datanames. For example, consider
our simple ontology of Figure 1 following the “discovery” that neutron scattering cross-section depends
both on element and atomic weight (Figure 2). Rather than redefining our “experimental neutron scat-
tering cross-section” domain, which consisted solely of the element name, the new concept of “an isotope”
(that is, element combined with atomic weight to form a pair) is introduced. A new dataname “isotopically
pure experimental neutron scattering cross-section”® maps isotope to cross-sectional area. Note that while
it is inadvisable to rename or change the dependencies of the old dataname, the descriptive part of the old
dataname’s definition can certainly be updated to explain that this dataname refers to the scattering cross-
section for natural isotope abundance (if that is indeed what was originally measured).

2.1.2 Managing large ontologies

Any reasonably large ontology will benefit from human-friendly organisational tools. The following three
suggestions may be useful:

1. Adopting a naming convention <type><separator><name> (e.g. “measurement:intensity”),
such that all datanames mapping from the same type have the same first component in
the name. This makes it easier to find datanames, and is also useful for machine-readable
ontologies.

2. Defining type “groups”, where all types of a given “group” are guaranteed to have the same
minimum set of datanames mapping from them?. This is most useful in translation scenarios
where the ontology writers cannot control the concepts found in foreign datafiles. For example,
a legacy standard may separate “sample manipulation axis” and “detector axis”; an alternative
ontology might simply define an “axis” type. A proper description of the contents of the legacy
datafile requires defining datanames for the two types of axis, in which case assigning an axis
“group” to all of “axis”, “sample manipulation axis” and “detector axis” types saves space
redefining all of the common attributes of an axis. Note that we should not use the format
adapter to perform such legacy manipulations as, by design, we wish it to contain no scientific
knowledge (see below).

3. Separating ontologies into a “core” or “general” ontology, and subsidiary ontologies that define
transformations of items in the core ontology. This allows datanames created for legacy datafiles
whose values are subsets of values of datanames in the core ontology to be separated out,
reducing clutter and repetition.

2.1.3 Units

The ontology must specify units in order to avoid ambiguity. Not specifying units is equivalent to allowing
the elements of a codomain to be represented as a pair: (real value, units), where units can have
different values (e.g. “mm” or ‘cm”), breaking our basic rule that each element of the domain maps to a single
element of the codomain: for example, ‘1cm’ is the same as ‘0.01m’ and therefore any value that maps to
‘(1, cm)' maps also to (0.01, m)'. The units of measurement are therefore a characteristic of the type as a
whole, that is, units should always be specified for olog types where units are defined. Where multiple units
for a single concept are in common use and the community cannot agree on a single choice, separate types
must be defined together with separate datanames mapping to those types.

3 A much shorter dataname such as iso.cross is, of course, also acceptable.
4 OWL class-subclass relations could be used for this purpose.

Art.12, page6 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

Has experimental
neutron scattering

cross-section .
An element > An area in barns

Has isotopically pure experimental
neutron scattering cross-section

Has atomic weight

An isotope denoted by > A positive integer
(element, atomic weight)

Is of element

Figure 2: Adding a new dependency to an ontology. Adding a dependency on isotope requires definition of
a new dataname denoted here by "isotopically pure experimental neutron scattering cross-section”.

2.1.4 Uncertainties

Standard uncertainties (su) are sometimes included as part of the data value (for example, in the CIF stand-
ard), resulting in a data value that is a pair of numbers. This may be convenient in situations where functions
of the data value need to propagate errors. Alternatively, the su can easily be assigned a separate dataname
as the mapping from measurement to su is unambiguous. In such a case, when the (measurement, su) pair
is required, an additional dataname corresponding to this is defined.

2.2 The dataname list

A data bundle contains the values for some set of datanames. The list of datanames in the bundle, together
with the ontology, completely specifies the semantic content of the transferred data. A data bundle may
be further characteristed in practice by indicating which datanames (if any) must be unvarying within the
bundle. A single value for a constant-valued dataname can be supplied in the file, and then datanames
that are dependent on such constant-valued datanames do not need to explicitly link their values with the
corresponding constant-valued dataname value, leading to simplification in datafile structure. In the
following, for simplicity “data file” and “data bundle” are used interchangeably, although in general a data
file may include multiple data bundles; in the CIF and NeXus contexts the bundles inside the data files are
called ‘data blocks’ and ‘entries’ respectively.

The specification of such dataname lists for a bundle may evolve over time in three ways: (i) addition of
single-valued datanames; (ii) addition of one or more multiple-valued datanames; (iii) change of a single-
valued dataname to a multi-valued dataname. The considerable difficulty involved in distributing updated
software in a timely manner requires that there is no impact of such evolution on already-existing software,
that is, if the dataname list contained within a file produced according to the standard is updated, that file
must remain compatible with software that reads older files. The first two cases meet this requirement given
the stipulation on ontology expansion (Section 2.1.1). If, however, a single-valued dataname becomes mul-
tivalued as in case (iii), software that expects a single value will almost certainly fail. This failure is usually
due to the fact that, in addition to a dataname becoming multi-valued, a series of other values for depend-
ent datanames must now be connected to the appropriate value of the newly multi-valued dataname using
some format-specific mechanism. Note that a simple algorithmic transformation exists to transform the
new-style files to old-style files: for every value of the newly multi-valued dataname, a data bundle with this
single value for the dataname is produced. This means that file reading software could, in theory, automati-
cally handle even this type of evolution in the dataname list. Software written in this way appears to be rare
in practice however, presumably because moving to a multi-valued dataname will often imply a different
type of analysis and therefore significantly different or upgraded software, which is then written to handle
older-style files internally as a special case.

To successfully transfer datafiles automatically, authors of both file creation and file reading software must
agree on the contents of the dataname list to the extent that the file reading software requires a subset of

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art.12, page7 of 17

the list placed in the file by the file creation software. One simple but initially time-consuming strategy to
achieve such coordination is for the file authoring software to place into output files as many dataitems
from the ontology as are available; if this is insufficient for a given application, the problem lies with the
experiment or ontology rather than with the authoring software. Another form of coordination arises based
on the use case: a sufficiently well-understood use case will imply a set of concepts from the ontology on
which both reader and writer will independently agree. For example, the use case “display a single-crystal
atomic structure” immediately implies a list of crystal structure datanames, which can be encoded into an
output file by structural databases and then read and used successfully by structural display programs, with-
out any direct coordination between the parties. Similar scenarios determine the contents of dataname lists
found in ad-hoc standards based around input and output files for particular software packages.

Long-term archiving is an important special case, as the specific use to which the data retrieved from
the archive will be put is not known. Archives therefore aim to include as much information as possible;
database deposition software acts to enforce the corresponding dataname list (even if this requirement is
not phrased in terms of datanames), and the feedback loop via database depositors to the authors of their
software eventually creates a stable dataname list. The IUCr “CheckCIF" program (Strickland, Hoyland, &
McMahon (2005)) works in a similar way to enforce a dataname list for publication of crystallographic
results.

2.3 Choosing a file format

Given that our data is simply an instance of our olog, a file format at minimum must allow (i) association of
datanames with sets of codomain values, and (ii) matching codomain values to the domain values for each
dataname. Any other capabilities provided by the format are not ontologically relevant, but may have impor-
tant practical implications, for example efficient transfer or storage, or suitability for long-term archiving.
Allowing for expansion and variety in dataname lists from the outset is important: as discussed above, this
means allowing for the possible addition of new single- and multiple-valued datanames, where the multiple-
valued datanames may be independent of the already-included datanames (in database terms, a new table
might be required)°. If such a format is not chosen initially, the alternative is to move to a new format when
faced with a use case requiring e.g. more columns than the format allows. Although integration of a new
format into a data transfer specification is dramatically simplified by the present approach, the impact of
adopting a new format on the distributed software ecosystem that would have developed around the pre-
vious format would still be considerable, meaning that the choice of a flexible format capable of contain-
ing multiple independently varying datanames (i.e. multiple tables in database terms) is strongly advisable
when designing any new standard.

Certain types of value found in the ontology may not be easily or efficiently represented by a given file
format: the format may not provide a structure that can efficiently represent a matrix, for example. Just as
for dataname location issues, the ontology is impervious to such data representation issues; rather, it is up to
the authors of the transfer specification to choose a format which is the best fit to the dataname list which
their use case requires®.

2.4 Elements of a format adapter
The format adapter describes how the values for the datanames in the dataname list are encapsulated in a
data format. The format adapter provides the following information:

format the file format used

location in format how values corresponding to each name in the dataname list are located in the
chosen format

value representation how each type of value is represented in this format (if at all), including how
missing values are reported.

> Among others, HDF5, the CIF format, relational databases and XML fulfill this requirement.

¢ Interestingly, heterogeneous lists of values are unlikely to be needed in data files, as any processing of such a list will by definition
require separate treatment for each element, and consequently a distinct and definable meaning is available for the individual
components which can thus be included in their own right within the ontology. While the ontology itself will still contain such
heterogeneous tuples (e.g. for a dataname that is a function of multiple other datanames with differing types), the datafile itself
does not need to contain this tuple so long as the tuple can be constructed from its individual components on input, if necessary,
by the programmer.

Art.12, page8 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

It is often the case that a standard third-party format (e.g. XML or HDF5) offers choices for the way in which
multiple datavalues can be encapsulated or a particular value is expressed. In such cases, the format adapter
builds on the data format specification to delimit which of the available options have been chosen. For
example, the NeXus standard uses custom HDF5 (The HDF Group 1997-2016) attributes to locate datan-
ames, rather than logical HDF5 paths (see below). For simple formats no explicit format adapter specifica-
tion may be necessary.

By design the format adapter embodies no knowledge of the scientific ontology. This stipulation ensures
that scientific domain knowledge is not linked to any particular format, and is accessible to ontology authors
and readers. In programming terms, code implementing a format adapter should never rely on knowledge of
a dataname when performing calculations on values. Format adapters may therefore compress and expand
values, but not calculate values for missing datanames from datanames that are present. Where a format
adapter author requires new datanames, a supplementary ontology should be created.

3 Application I: developing an ontological commons

3.1 Using pre-existing specifications to create the commons

An advantage of the current approach is that ontological information can be harvested from multiple pre-
existing standards and placed into an “ontological commons”, which can then act as a community resource
for updating old standards and creating new standards. When new standards draw on such a commons,
older data files can be automatically translated to the new format as datanames in the new ontology will be
a superset of those found in the older standards.

A procedure for extraction of datanames from old standards and conversion to standard form for inclu-
sion in such a commons requires unpacking the approaches used by particular standards designers to meet
practical goals such as efficiency or simplicity. While the term “dataname” is not necessarily used in specifica-
tion material, the scientific content of all data formats can be simply described as a collection of values for
datanames. In this context, a “dataname” is a function that maps a set of locations in the file structure to one
or more values corresponding to an olog type: examples of such locations include nodes in a hierarchical
tree at the same level or of the same class, a column number, a field number in each line, or a byte offset. In
addition to the easily-identified single-valued datanames, any logical structure that allows multiple values
to be associated with an object is a potential dataname The following guide to creating an ontological com-
mons includes examples of common location types of which the author is aware.

1. For each standard, identify the types. The list for value type in section 2.1 is likely to cover most
types found in typical data formats.

2. Asdiscussed above, sets of logical locations that map to one or more values of a single type are
assigned datanames. The nature of these locations is entirely determined by the particular file
format. As specifications, in order to be useful, must link operations on the file with scientifi-
cally relevant information, the linkage between scientific concept and logical location is usually
simple to determine. As well as these obvious location specifications, the possible structural
relationships for each format used by the standard are examined, and additional datanames are
created when those structural relationships are used to encapsulate information. If structural
relationships are only used to create the correspondence between values of multiple-valued
datanames no dataname is created. Typical examples of “structural” datanames include the order
of appearance of a value being significant (so an additional dataname taking sequential values
might be required) or a parent in a hierarchy being significant (so the identifier of the parent is
recorded in a new dataname). On the other hand, if a structural relationship is common to all
datafiles for a given standard (e.g. detector’ is always a child of ‘instrument’), it is unlikely to be
significant as it conveys no dataset-specific information. Locations that refer solely to aspects of
the format (e.g. compression type, format version) are ignored.

3. The union of the sets of datanames from all the component standards results in the overall
ontology. When performing the union, datanames with the same apparent meaning but
different dependencies must be distinguished, and datanames may only depend on datanames
that are either also defined within that ontology, or else may be assumed to take a constant, default
value: a standard that includes datanames “A” and “B" could state that “A” is a dependency of
“B"” whereas a similar assumption can only be made for a standard that does not include the
concept “A” if it is possible to deduce that concept “A” has a constant value for all data bundles.
For example, a data standard may apply to a single detector, in which case “detector number”,

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art. 12, page9 of 17

although absent from all data bundles, can still be assumed to be present as a hidden potential
dependency. Note in addition that, following the discussion in section 2.2, some constant-
valued concept “A” may be linked to concept “B” in the data file purely by virtue of being in the
same data bundle (“data block”,"data entry”“file”); in such a case scientific knowledge may be
required to identify the dependency. The simple question to ask is: “if ‘A’ had a different value,
would (some values of) ‘B’ be different?”.

3.2 Incorporating new datanames and domains into an ontological commons

New relationships arising from the above procedure may be as simple as an extra mapping between
pre-existing types, for example, a soil temperature measured at a location where only air temperature had
previously been measured (i.e. a new olog arrow from type ‘a location’ to type ‘a temperature’ labelled ‘has
measured soil temperature’). A more complex situation arises when the new concepts involve an expansion
or a restriction of pre-existing types, and it is in this case that our strictly functional relationships can be
leveraged to our advantage. Consider the following example: Image ontology A contains the general type
of ‘a frame’ measured from ‘a detector’ which consists of one or more ‘elements’. Ontology B contains only
the type ‘a frame measured from a single-element detector’. In our olog view, we can construct the more
restrictive types of Ontology B from the Ontology A types using ‘pullback’ (also known as the ‘fibre product’).
A set of objects created by a pullback is (isomorphic to) a set of pairs, with the elements of each pair coming
from the two sets that have been ‘pulled back’. The pairs appearing in the pullback set are restricted to
those for which both elements map to the same element of a third set, so we are essentially filtering the set
of all possible pairs. In mathematical terms, if f: A— Cand g: B— Cthe pullback A xcBis{(a, b) |a € A,
b B,fla) = g(b).

In our image ontology example, we can create the type ‘@ monolithic detector’ as the pullback of the type
‘detector’ and single element type containing the integer ‘1", and the mappings ‘has number of elements’
and ‘is’. We can now continue to pullback (Figure 3) until we have arrived at the type ‘a frame from a sin-
gle element detector'. Usefully, mappings to the pulled-back types travel from the pulled-back type, which
means that we have simultaneously specified the reverse operation: we can both compute the contents of
the more restrictive datafile format, using the specification of pullback, and compute the contents of the
more general datafile by simply following the mappings from the pulled-back types as usual. Of course, in
a round-trip between the datafiles, any multi-element detector information is lost, as the more restrictive
datafile bundle cannot contain this information.

An analogous operation to pullback (‘pushforward’) exists to fill in the bottom right-hand corner of our
diagram given only the other three vertices; this is not described here but is well covered by Spivak & Kent
(2012) and Spivak (2014).

It is inevitable that an ontological commons created from multiple datafile specifications addressing
related use cases will accumulate many overlapping definitions. It would be tedious and counter-productive
if every subset of a type required complete definition of both that type and the possible datanames (e.g.
axis’, ‘detector axis’, ‘goniometer axis', ‘general axis’ all might act as domains for the common mappings
‘axis vector’, ‘axis offset’, ‘axis position’, ‘axis type'). Many of these multiple types are concisely specified
using pullbacks, and as pullbacks explicitly define simple projections to the type of each member of the
pair, the onward mappings defined for those types can be extended back to the pullback type as well; the

has number
A frame from comes from A monolithic belongs to A monolithic of elements The number 1
a monolithic detector »| detector element > detector >
is is is is
A 4 Y Y Y
A frame A detector element A detector A positive integer
» » »
» > >
comes from belongs to has number
of elements

Figure 3: Using pullbacks to relate restrictive definitions to broader definitions. The types on the top left of
each square are pullbacks from the types beneath and to the right. Values for datanames corresponding
to identifiers and functions in the top row can be automatically derived from data described using the
bottom row, and vice versa.

Art.12, page10 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

convention can therefore be adopted in the ontology description that identical mapping names have iden-
tical meanings — provided that no name collisions occur for the two pulled-back categories. Appropriately
equipped ontology description languages (such as OWL) can concisely model such pullbacks using the
“class”-“subclass” relationship.

4 Application II: Machine translation between data formats

The early knowledge representation literature noted that an ontology can be used to mediate between dif-
fering data representations (Gruber 1993). In terms of our definitions and ontological commons described
above, data format translation involves transformation of values associated with datanames in dataname
lists. Of course, a transfer of all data is only possible where the target dataname list contains the same, or
more general, concepts as the source list.

The approach to scientific ontology described here deals with abstract types for values (e.g. a real num-
ber'). Within a computer we do not have access to this abstract ontological space and so we must specify a
value representation (e.g. “IEEE 754 floats represent real numbers”,‘all identifiers are character sequences”)
when using the ontology as the common ground for datafile translation.

Given a canonical ontology created from source and target standards according to the procedure in
Section 3, the process of datafile transformation is clear”:

1. Identify a dataname list for each file type based on the datanames that appear, and whether or
not multiple values are present.

2. The intersection of the datanames appearing in (1) is a list of datanames whose values can
be trivially obtained from the input file using an input-format-specific module. Note that to
convert from multiple values for a given dataname to single values for that dataname, output a
single data bundle for each of the multiple values. The reverse direction is trivially possible as a
single value is a special case of multiple values.

3. For each remaining item in the output list, use the aspects linking the types in the ontology to
calculate the dataname values using as starting values the input file values obtained using the
input-format-specific module.

4. Use an output-format-specific software module to store the values calculated in 2 and 3.

If the values calculated at steps 2 and 3 are instead directly input into application software, that software
becomes capable of reading any file format for which an input-format-specific module is provided.

4.1 The format-specific module

The format-specific module handling both the dataitem location and dataitem value conversions to com-
mon units and representation is a key component in the above translation procedure, essentially encapsulat-
ing the format adapter in machine-readable form. A suggested minimal interface (API) for a format-specific
module follows, where we assume that one or more data bundles can be contained in a single file, and that
no file is simultaneously open for reading and writing. Note that an object-oriented approach would hide
the filehandle and datahandle parameters within an object, with these functions becoming methods
of that object.

get_by_name(datahandle,name,type,units): Return an array of values in optional units in the
agreed representation for the ontological type associated with dataname name in data bundle
datahandle. Values returned for different names mapping from the same domain must occur at
the same indices in the return array.

set_by_name(datahandle,name,values,type,units): Set dataname name in datahandle
to values of type type. The same considerations as above apply to handling types and value
correspondence.

create_data_unit(filehandle,optional_name): Create and return a datahandle to a new data
bundle for file filehandle.

7 This approach to translation assumes that the dataname lists are drawn from a common ontology, which is predicated on human
intervention to combine the differing ontologies. Spivak (2012) treats in detail a situation in which ontologies remain separate, but
a morphism between the ontologies is stipulated (a ‘functor’). While such a morphism can generally be computer-derived in the
context of database transformations, in the present discussion human intervention is required and therefore creation of a single
common ontology is the simpler route.

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art.12, page11 of 17

close_data_unit(datahandle): Finalise a data bundle. The data handle becomes invalid.
open_file(filename,mode): Open a data file for reading or writing, returning a filehandle.
output_file(filehandle): Write out a file containing one or more data bundles.

The above functions include type and units parameters: type is included because the format adapter
cannot, in general, deduce the appropriate ontological type given the format-specific value — this can be
seen clearly for text-based formats such as CIF, where identical character sequences in a file could refer to
a real number or to a simple text string (e.g. “1.1" might refer to Chapter 1, Section 1 or the real value 1.1).
Likewise, providing units allows the implementation to transform the units used within the file to those
prescribed by the ontology.

4.2 Machine-readable transformation instructions

Our simple ontology description leads to the simple, uniform nature of the values provided by the format-
specific software modules, allowing any data transformations to be expressed using a uniform, file-format-
agnostic language. Just as we are forced to choose a concrete representation for abstract ontological values,
any mathematical algorithms found in the ontology must be transformed into an expression in a particular
programming language using format- and programming language- specific interfaces before they can be
used for data value transformation.

4.3 An extended example: converting between NeXus and CIF raw image files
As a demonstration of many of the ideas presented here, code for transforming between files constructed
according to the imgCIF (Bernstein 2006) and NeXus/NXmx (NIAC 2015) standards has been developed
(code supplied in supplementary material). Both of these standards relate to handling diffraction images
produced by scanning single crystal samples in X-ray beams. CIF and NeXus use differing styles of format
(custom text format and binary HDF5, respectively), and each standard targets radically different data bun-
dles: a single imgCIF data bundle may contain multiple frames each with differing layouts; each frame
may correspond to a collection of images from multiple detectors consisting of multiple modules. These
frames can be obtained from multiple scans of multiple axes. By contrast, the scope of the NXmx definition
is restricted to a single scan of a single axis, with each frame presented as a single image with unvarying
structure®. Translating files in the presence of these dramatically varying scopes and formats is a useful test
of the concepts presented here.

We follow the procedure outlined above to first determine a notional overall ontology for images that
encompasses both NeXus and CIF.

1. (identifying types)
NeXus: NeXus includes the usual numerical types and arrays thereof, as well as character
strings. In some cases character strings are drawn from a restricted set of possibilities. Each of
these sets is a separate type.
CIF: The CIF2 standard includes integers, floating point numbers (with and without
uncertainties), character strings and sets of character strings, homogeneous lists and arrays.
2. (identifying datanames)
NeXus: Broadly speaking, the NeXus specification (Kénnecke et al. 2015) consists of “class”
descriptions and “application definitions” built from those class descriptions. These classes
have array-valued properties and attributes, and can be nested inside one another to form a
hierarchy. A data bundle corresponds to a top-level root of the hierarchy, called an “entry” class.
Multi-valued properties or attributes are constructed:

(a) using HDF5 arrays. These are denoted in the specifications using appended square brackets
with a symbol inside, and datanames mapping from the same domain are indicated by use
of the same symbol within the square brackets;

(b) by repeated use of a class;

(c) by encoding multiple values within a text string: for example, a single NeXus attribute lists
multiple axis names in order of precedence.

8 Conformant NXmx files can be produced with a somewhat broader scope than that described here. A restricted scope has been
chosen for the purposes of demonstration. Interested readers are directed to the NeXus website (www.nexusformat.org) for more
information.

www.nexusformat.org

Art.12, page12 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

(d) (structural datanames) classes nested within another class have no significance beyond
associating values (see Figure 4 and discussion). Some items use array index as an implicit
identifier for which a dataname should be created.

CIF: The CIF format directly associates either a single value or a column of values with a data-
name appearing only once in the data bundle (called a “data block” in CIF). No other choices are
available. Row position in a column is used only to indicate value correspondence.

3. Alist of datanames used in the example is presented in Table 2. Intermediate datanames used
during translation (including many of the aspects in Figure 3) are not shown. Translation of
datanames useful to the human reader is also possible where simple equivalences exist (e.g.
‘sample identifier’), but have been omitted for brevity. Note that the datanames have been cre-
ated purely for the purposes of this demonstration and have no other significance.

The transformation code consists of three files written in Python: (i) a translation manager that is passed the
required input/output formats and dataname list, calls the format adapters and ontology-based transforma-
tion routines, and splits the data bundles as necessary; and (ii) NeXus and CIF ‘format adapters’ conforming
to the API described above, which internally make use of third-party format-specific tools. Ontology-driven
translation is accomplished via a machine-readable ontology written in a version of DDLm(Spadaccini &
Hall 2012) enhanced to allow specification of pullback relationships. DDLm has been developed within
the CIF community as a largely format-agnostic ontology language incorporating machine-readable datan-
ame functional relationship specifications using dREL (Spadaccini et al. 2012). The use of a different set of
datanames for the API and the DDLm ontology is purely to demonstrate that datanames can be simple,
readable text without the special symbols or formatting used in the pre-existing DDLm ontologies (known
in the CIF framework as “dictionaries”). Indeed, the entire ontology could have instead been written in OWL,
with embedded dREL methods, but the availability of DDLm dictionaries covering the subject area together
with appropriate software made the current approach attractive. The translation manager internally
translates between the canonical names and names used within the DDLm dictionaries.

To illustrate the roles played by the various components in the process of translation, the translation of
a few representative datanames between CIF and NeXus is described in detail below. In each case, a list of
datanames to be encapsulated in the output format is provided to the translation manager. Each dataname
is either read directly from the input file, or calculated from relationships provided in the DDLm dictionary.
The following descriptions elide some technicalities, which are covered in the documentation accompanying
the supplementary material. In the following, a “category” is the DDLm term for the collection of datanames
mapping from a single type and should not be confused with the “categories” of category theory or the
closely similar “categories” of other ontological languages like OWL.

incident wavelength (CIF to NeXus): The corresponding DDLm name in the DDLm ontology
is consulted to determine the type (‘Real’) and units. The CIF format adapter is able to provide the
associated values in the correct units using CIF dataname _diffrn_radiation_wavelength.
wavelength. The ontology specifies that dataname “incident wavelength” is a function of “wavelength
id", which must therefore also be included in the output dataname list and is also provided directly by
the CIF format adapter using identifier _diffrn_radiation_wavelength.wavelength _id.
These two lists are passed to the NeXus format adapter which stores the wavelength values at hier-
archical location NXinstrument:NXmonochromator:wavelength with canonical units and encodes
“wavelength id" as the index of the value in this array.

incident wavelength (NeXus to CIF): The wavelength is retrieved from the hierarchical location and
the units converted to those requested, if necessary. The wavelength ids are generated as a sequence
of integers corresponding to the position in the array of the corresponding wavelength. These two lists
are passed through to the CIF format adapter. Note that a CIF-NeXus-CIF round trip is not guaranteed
to preserve the textual values of wavelength id: this is acceptable, as the identifiers are opaque and
arbitrary.

simple scan data (CIF to NeXus): This canonical name has been assigned to the list of two-dimensional
image frames collected from a single-element detector with uncoupled detector pixel axes and a
corresponding DDLm name _local_diffrn_scan_simple_frames.array_data.’ The CIF
format adapter cannot directly supply these image arrays, as the CIF file contains arrays that poten-
tially correspond to individual elements from multi-element detectors and jointly-varying pixel axes.

9 In accordance with CIF convention, all unofficial datanames contain the string ‘local'.

http://rn_rad.iation_wavelen.gth

Art. 12, page13 of 17

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

"ISIX9 AQU3 21oyMm ‘Sjeutio] 9A13adsal 3y} Ul SUOIIEIO] JUS[BAINDI Aj1juap! suwin|od snXaN pue J]DSWI 3y] ‘papn[dul JouU aIe UOIIe[SUBI} paseq-AIeuondIp
SuLINp pasn saweuelep ILIPAULIdIU] '[dV Y} AQ pPasn sauweueiep asoy} ale SaWeu [edruoued 3y -9jdwexa uone[suel} J[DSWI-XWYN Y} Ul pasn saweueleq g d[qeL

san[eA 195 01 yoedun Isnpy

S[NPOWINS WO} SUIOD 10 SINOAE] JO AI3LIEA B 2ARY

Aew eyep J[DSwI se ejep ueds ajduirs se swes 3yl 10N

saxe pajdnooun sajouap 2duis,

‘PIoYy Luonisod, e pajeald aABY oM ‘QIEMIJOS SS3I0E
snyaN A1ed-pliy} ay3 ut suonewWI 03 N ‘dpou
dnoui3 ay3 01 payoelie Aelre ue sasn A[jenioe XWXN

AISIXeBIEp SaXE'BJEPXN'1010319pXN Ul SULISPIO WOI]
SOXE'BJEPXN'1019919PXN
elep'elepXN ul aduereadde jo 1apio woly

@1 awely aweyy ueds a[duws ©1Ep EIEPXN1030939pX N IUWNISUIXN

19YHUSP! EIEP AT

1951JO®)SUOIIBWLIOJSUBII-XN

al sixe “(1010930p‘a1dwes}XN
J10129A®)SUOIBULIOJSUBI}-XN
] sixe “{1010919p‘a1dwes}¥N

suonewojsuenl-X N {1o1919p‘ajdwes}xN

] SIxXe uoI}edo| Sixe auwrely

‘(1] WIB1j UOIIEIO] SIXE U] uonsod suoneuLIojsueIIXN

uonsod'suorie
-wiIojsueIIXN ut auereadde jo 1apio woiy

SUOIBWLIOJSUBIIXN
ANUaxN

[18ua[onem
‘weag¥ N ut adueleadde Jo 19p1o wol

13U3[ABM

al YyiSuajoAem juapour *10JEWOIYD-OUOWY N JUBWNIISUIXN

9ouapadaid sixe ejep
al SIxe eyep
@j awely dwely ueds djdwis

ejep ueds ajdwis

Blep ac
pr-Areuiqejep Aelre Jaynuapi elep az

Se1SIW
19s}J0 sixe {1030932p 9[dwurs ‘Iajaworuos}

sejsow
103094 sIXe {1032939p a[dwIs ‘191owoIuos}

I sixe {1030939p a[dwis ‘1a3oworuos}

JENTONNG] 19S}JO SIXe
10109A'SIXE J10129A SIXE
adAysixe adAy sixe
prsixe ar sixe

93UE'SIXe -aWel) ueds UIIp

prowey
"SIXE”-9Wel) UedS UIYIp

pITSIXe'SIXE -oWely UBds” UIIp

pruigip

PI'y13US[-9ABM ™ UOIIRIPRI UIJIP

13Ua[aABM
“Y13US-9ABM UOIIBIPEI UIJIP

uonsod Je[n3ue uoIedIof SIXe Jwel)

] awelj uoredojf sixe awelj
] SIXe uoI1ed0] Sixe awelj

i ueds

dl Yy1suajanem

y18ua[oAeMm JuapIdUL

sjuswwo)

uo spuadag XWYXN

J108uI

auwreu [ediuoue)

http://_axis.frame_id
http://_axis.frame_id

Art.12, page 14 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

The translation manager therefore passes the CIF format adapter object to the ontology processing
module with a request to derive “simple scan data”. The ontology contains the relationships of Figure 3
in machine-readable form, allowing the frame list to be automatically populated with only those frames
that correspond to monolithic detector data, which is then passed to the NeXus format adapter. The
NeXus format adapter stores the list of frame data at class location NXentry:NXinstrument:NXdetect-
or:NXdata. “simple scan data” is a function of “simple scan data frame id", which is also derived by the
ontology and, just as for wavelength, becomes encoded in the list position of the frames stored in the file.
2D data (NeXus to CIF): The NeXus image frames stored above are clearly a special case of the more
general CIF frames. The ontology specifications are followed in the reverse direction to populate the
canonical names recognised by the CIF format adapter. Just as for wavelength, the NeXus format adapter
generates the frame identifiers from the frame positions, and these identifiers may not correspond to
the original identifiers.

detector axis vector mcstas (CIF to NeXus): This name refers to the direction of an axis associated with
the detector, expressed in NeXus coordinates. The CIF format adapter cannot supply this, as CIF does not
distinguish a separate detector axis type and uses a different coordinate system. The ontology defines
the detector axis category as those items within the axis category with _axis.equipment equal
to ‘detector’ (i.e. a pullback), and the axis category (under ‘axis.local_vector_convention?2’)
specifies how a NeXus axis vector can be obtained from a vector in the CIF coordinate system.
These ontology methods are applied to obtain the requested vector values for all detector axes.
These values are a function of “detector axis id". In this case, the axis ID is stored (as prescribed by NXmx)
as a NeXus NXtransformations class group name, and the vector is stored as an attribute of this group.
Note that the identifier text is explicit (and preserved) in this case as axis identifiers are used elsewhere
in NeXus to describe each dimension of the data array.

axis vector (NeXus to CIF): The ontology specifications are followed in reverse order to populate these
values. In this case, the original axis identifiers are recovered.

The conceptual coverage of the ontology provided here is manifestly incomplete, as it is intended for dem-
onstration purposes and as a check that each type of location and datavalue presentation in HDF5 is prop-
erly interpreted and constructed. While the code is freely licensed and thus may be used as a base for
development, it should not be considered suitable for production purposes or bug-free. Note also that the
datanames in the DDLm dictionary supplied are strictly for demonstration purposes and should not be used
in any CIF data files unless they appear in official dictionaries. Further details of the transformation system
are provided in the supplementary information.

5 Discussion
The “traditional” alternative to the ontology-based translation approach implemented above is to write dedi-
cated software to perform direct translation between the two data standards. For example, Bernstein et al.
(2014) address the same imgCIF/NXmx translation problem by creating a “concordance”, with equivalences
and translations expressed in terms of the particular data structures of the respective file formats. This
information is then consulted by programmers to write software specific to this particular pair of standards.
Such an approach does not scale when the number of target formats increases, requiring N2 distinct trans-
lations for N formats, and judgements about equivalence and transformation algorithms are often (unlike
the work of Bernstein et al.) hidden in computer code. The advantage of the approach described here is that
ontological terms and relationships (that is, non-format-related information) are captured and accumulated
in a universal system, which can be reused with other formats. For example, due to the broad scope of the
imgCIF ontology and the significant expansion of that ontology entailed by the need to specify the more
limited datanames appearing in the NXmx definition, virtually no further ontology development would be
necessary to encompass the data appearing in many of the other, simpler, image formats. Therefore, it would
be sufficient to provide a format adapter for a given image format (or class of formats) to allow immediate
translation into any of the other formats already covered by a format adapter. This is simply a reiteration of
the old argument that, given N standards, creating 2N translations to and from a single master standard is
more efficient than N2translations between each standard; the difference here is that the master standard is
now a scientific ontology which cannot itself encapsulate data, but is accessible to the broader community
and can thus be verified and developed.

The present work also underlines the point that complexity present in some data standards does not origi-
nate in the nature of the scientific information: the ontology demands only that a set of single or multi-valued

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art.12, page15 of 17

Dataname 1 Dataname 2 Dataname 3 Dataname 4 Dataname 5 Dataname 6

A Q X 11 T 'blue’
A Q Y 21 F 'green’
A R X 1.5 F 'vellow’
A R Y 112 T 'green’
B Q X 21 F 'yellow’
B Q Y 31 T 'pink’
B R X 45 F 'vellow’
B R Y -12 T "brown’

Table 3: A hypothetical data table where datanames 4, 5 and 6 are each functions of the combined values
of datanames 1, 2 and 3.

(Dataname 1) (Dataname 2) (Dataname 3)

1.1 Dataname 4
T Dataname 5

/ X blue Dataname 6

Q
A/ T 2F.1
" green
\R<Y etc.
Q<X
_— Y
B
\R/X
T

Figure 4: Table 3 as a hierarchy. Six repetitions of dataname 1 values and 4 repetitions of dataname 2 values
are removed, saving space.

datanames be present in a file with corresponding values correctly associated. Mechanisms designed
to reduce file size are one source of complexity: for example, both HDF5 and imgCIF have image compres-
sion facilities™. Hierarchical formats save space by associating identifiers with node names and thereby
reducing repetition, as demonstrated by comparing Table 3 and Figure 4. This space-saving attribute of
hierarchies becomes more effective as the number of datanames upon which a set of datanames depends

1 Images as two-dimensional arrays of numbers are themselves an efficient representation of the basic olog function taking a pair of
integers (the horizontal and vertical pixel coordinates) to a number (the intensity), where the efficiency arises by having the pixel
coordinates encoded in the position of the number in the overall array.

Art.12, page16 of 17 Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework

increases, and is also attractive as an organisational tool: the reduced clutter in Figure 4 presumably allows
the human brain to interpret the structure more rapidly.

Unnecessary complexity in the system arises from the indiscriminate use of complex structures available
in a given format without an understanding of the simple essential ontological structure described here.
Designers of data transfer standards are urged to consider that the fundamental task of any scientific data
format is to associate multiple values to datanames; any complexity beyond that which is required for this
purpose should be clearly justified in terms of the other goals of the format, such as efficiency, speed, or
long-term archiving.

6 Conclusions

A simple formal approach using “ologs” has been applied to create a set of rules for constructing and curat-
ing a domain ontology. This framework was designed with accessibility to discipline experts as a key priority,
while maintaining extensibility and modularity, and containing enough information to allow elaboration in
formal ontological languages. As the tasks of expanding and merging these ontologies is entirely depend-
ent on human intervention, this paper should not be counted as a significant contribution to the onto-
logical mapping literature; from the perspective of knowledge representation researchers, the framework
presented here does little more than describe some of the desirable consequences of adopting ologs as an
ontological scheme. The primary significance of this work is rather in demonstrating to ontologically-naive
scientific communities the value of a simple formal approach when developing and working with data
standards: by following the simple prescriptions in section 2.1, discipline experts can create ontologies that
are guaranteed to be format agnostic, extensible, interoperable and accessible to other discipline experts;
and the scientific content of legacy and current data formats can be seamlessly merged into these ontologies
following the recipe in part 3. If the ontologies are then expressed in machine-readable form using one of a
variety of ontological languages, such as OWL or DDLm, a modular, universal datafile input and translation
system can be implemented without the need for an intermediate format to be defined.

Supplementary Files
The supplementary files for this article can be found as follows:
- Supplementary File 1: Appendix. http://dx.doi.org/10.5334/dsj-2016-012.s1
- Supplementary File 2: Software distribution. http://doi.org/10.5281/zenodo.154459

Competing Interests
The author declares that they have no competing interests.

References

Bernstein, H J 2006 Classification and use of image data. In: Definition and Exchange of Crystallographic
Data, vol. G of International Tables for Crystallography, 1st ed., pp. 199-205. DOI: http://dx.doi.org/10.1
107/97809553602060000739

Bernstein, H J, Sloan,] M, Winter, G, Richter, T S, Nexus International Advisory Committee and
Committee for the Maintenance of the CIF Standard 2014 Coping with BIG DATA Image Formats:
Integration of CBF, NeXus and HDF5, A Progress Report. Available at: https://sites.google.com/site/
nexuscbf/home/presentation-foils/Integration_Poster_10May14_w_overlays.pdf.

Boulton, G 2012 Open your minds and share your results. Nature, 486(7404): 441-441. DOI: http://dx.doi.
org/10.1038/486441a

Gruber, T R 1993 A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2):
199-220. DOI: http://dx.doi.org/10.1006/knac.1993.1008

Hall, S and McMahon, B (Eds.) 2005 Definition and exchange of crystallographic data, vol. G of International
Tables for Crystallography. 1st ed. Dordrecht, The Netherlands: Springer

Henley, S 2006 The problem of missing data in geoscience databases. Computers & Geosciences, 32(9):
1368-1377. DOI: http://dx.doi.org/10.1016/j.cage0.2005.12.008

Hitzler, P, Krotzsch, M, Parsia, B, Patel-Schneider, P and Rudolph, S 2012 OWL 2 Web Ontology Language
Primer. Tech. rep., W3C. Available at: http://www.w3.org/TR/2012/REC-owl2-primer-20121211.

Konnecke, M, Akeroyd, F A, Bernstein, H J, Brewster, A S, Campbell, S I, Clausen, B, Cottrell, S,
Hoffmann, J U, Jemian, P R, Minnicke, D, Osborn, R, Peterson, P F, Richter, T, Suzuki, J, Watts, B,
Wintersberger, E and Wuttke, J 2015 The NeXus data format. Journal of Applied Crystallography, 48(1):
301-305. DOI: http://dx.doi.org/10.1107/5S1600576714027575

http://dx.doi.org/10.5334/dsj-2016-012.s1
http://doi.org/10.5281/zenodo.154459
http://dx.doi.org/10.1107/97809553602060000739
http://dx.doi.org/10.1107/97809553602060000739
https://sites.google.com/site/nexuscbf/home/presentation-foils/Integration_Poster_10May14_w_overlays.pdf
https://sites.google.com/site/nexuscbf/home/presentation-foils/Integration_Poster_10May14_w_overlays.pdf
https://sites.google.com/site/nexuscbf/home/ presentation-foils/Integration_Poster_10Mayl4_w_overlays.pdf.
http://dx.doi.org/10.1038/486441a
http://dx.doi.org/10.1038/486441a
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1016/j.cageo.2005.12.008
http://www.w3.org/TR/2012/REC-owl2-primer-20121211
http://dx.doi.org/10.1107/S1600576714027575

Hester: A Robust, Format-Agnostic Scientific Data Transfer Framework Art.12, page17 of 17

Kroon-Batenburg, L M J and Helliwell, J R 2014 Experiences with making diffraction image data avail-
able: what metadata do we need to archive? Acta Crystallographica Section D Biological Crystallography,
70(10): 2502-2509. DOI: http://dx.doi.org/10.1107/5S1399004713029817

NIAC 2015 Nxmx — nexus: Manual 3.1 documentation. Available at: http://download.nexusformat.org/
doc/html/classes/applications/NXmx.html.

Otero-Cerdeira, L, Rodriguez-Martinez, F J and Gomez-Rodriguez, A 2015 Ontology matching: A litera-
ture review. Expert Systems with Applications, 42(2): 949-971. Available at: http://www.sciencedirect.
com/science/article/pii/S0957417414005144. DOI: http://dx.doi.org/10.1016/j.eswa.2014.08.032

Otwinowski, Z and Minor, W 2016 Detectors and formats recognised by the HKL/HKL-2000/HKL-3000
software. Available at: http://www.hkl-xray.com/detectors-formats-recognized-hklhkl-2000hkI-
3000-software.

Shvaiko, P and Euzenat, J 2013 Ontology matching: State of the art and future challenges. IEEE Transactions
on Knowledge and Data Engineering, 25(1): 158—176. DOL: http://dx.doi.org/10.1109/TKDE.2011.253

Spadaccini, N, Castleden, I R, du Boulay, D and Hall, S R 2012 dREL: A relational expression language
for dictionary methods. Journal of Chemical Information and Modeling, 52(8): 1917—1925. DOI: http://
dx.doi.org/10.1021/ci300076w

Spadaccini, N and Hall, S R 2012 DDLm: A new dictionary definition language. Journal of Chemical Infor-
mation and Modeling, 52(8): 1907-1916. DOLI: http://dx.doi.org/10.1021/ci300075z

Spivak, D I 2012 Functorial data migration. Information and Computation, 217: 31-51. DOI: http://dx.doi.
org/10.1016/j.ic.2012.05.001

Spivak, D 1 2014 Category Theory for the Sciences. Cambridge, USA: MIT Press. ISBN 9780262028134. Avail-
able at: http://category-theory.mitpress.mit.edu;/.

Spivak, D I and Kent, R E 2012 Ologs: A categorical framework for knowledge representation. PLoS ONE,
7(1): e24274. DOI: http://dx.doi.org/10.1371/journal.pone.0024274

Strickland, P, Hoyland, M A and McMahon, B 2005 Automated data validation: Checkcif. In: Definition and
Exchange of Crystallographic Data, vol. G of International Tables for Crystallography, 1st ed., pp. 561-562.

The HDF Group 1997-2016 Hierarchical data format, version 5. Available at: http://www.hdfgroup.org/
HDF5/.

How to cite this article: Hester, J R 2016 A Robust, Format-Agnostic Scientific Data Transfer Framework. Data
Science Journal, 15: 12, pp.1-17, DOI: http://dx.doi.org/10.5334/dsj-2016-012

Submitted: 23 March 2016 Accepted: 12 September 2016 Published: 30 September 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.

Data Science Journal is a peer-reviewed open access journal published by Ubiquity
Ju[pod OPEN ACCESS @

http://dx.doi.org/10.1107/S1399004713029817
http://www.sciencedirect.com/science/article/pii/S0957417414005144
http://www.sciencedirect.com/science/article/pii/S0957417414005144
http://dx.doi.org/10.1016/j.eswa.2014.08.032
http://www.hkl-xray.com/detectors-formats-recognized-hklhkl-2000hkl-3000-software
http://www.hkl-xray.com/detectors-formats-recognized-hklhkl-2000hkl-3000-software
http://dx.doi.org/10.1109/TKDE.2011.253
http://dx.doi.org/10.1021/ci300076w
http://dx.doi.org/10.1021/ci300076w
http://dx.doi.org/10.1021/ci300075z
http://dx.doi.org/10.1016/j.ic.2012.05.001
http://dx.doi.org/10.1016/j.ic.2012.05.001
http://category-theory.mitpress.mit.edu/
http://dx.doi.org/10.1371/journal.pone.0024274
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.5334/dsj-2016-012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 A conceptual framework for data file standards
	2.1 Constructing the ontology
	2.1.1 Expanding ontologies
	2.1.2 Managing large ontologies
	2.1.3 Units
	2.1.4 Uncertainties

	2.2 The dataname list
	2.3 Choosing a file format
	2.4 Elements of a format adapter

	3 Application I: developing an ontological commons
	3.1 Using pre-existing specifications to create the commons
	3.2 Incorporating new datanames and domains into an ontological commons

	4 Application II: Machine translation between data formats
	4.1 The format-specific module
	4.2 Machine-readable transformation instructions
	4.3 An extended example: converting between NeXus and CIF raw image files

	5 Discussion
	6 Conclusions
	Supplementary Files
	Competing Interests
	References
	Tables
	Table 1
	Table 2
	Table 3

	Figures
	Figure 1
	Figure 2
	Figure 3

