
CODATACODATA
II
SS
UU

Agayan, S et al 2016 The Study of Time Series Using the DMA Methods and 
Geophysical Applications. Data Science Journal, 15: 16, pp. 1–21, DOI: http://
dx.doi.org/10.5334/dsj-2016-016

RESEARCH PAPER

The Study of Time Series Using the DMA Methods 
and Geophysical Applications
Sergey Agayan, Shamil Bogoutdinov, Anatoly Soloviev and Roman Sidorov
Geophysical Center of the Russian Academy of Sciences, Moscow, Russia
Corresponding author: Anatoly Soloviev (a.soloviev@gcras.ru)

The discrete mathematical analysis (DMA) is a series of algorithms aimed at the solution of 
basic problems of data analysis: clustering and tracing in multidimensional arrays, morphological 
analysis of reliefs, search for anomalies and trends in records etc. All the DMA algorithms are 
of universal nature, joined by the same formal foundation, based, in its turn, on fuzzy logic (FL) 
and fuzzy mathematics (FM).

The current study finalizes the search for the anomalies in one-dimensional time series within 
the scope of DMA: here the initial concept of an interpreter’s logic gets its additional devel-
opment. First, the formal expert’s opinions are more fully expressed, and this is realized with 
the more complex measures of activity (the concept of straightenings (Gvishiani et al. 2003; 
Gvishiani et al. 2004; Zlotnicki et al. 2005) is replaced by the measures of activity which come 
to the fore): second, for the junction of anomalies, a recently created DPS (Discrete Perfect 
Sets) algorithm is used DPS (Discrete Perfect Sets) (Agayan et al. 2011; Agayan et al. 2014).

Keywords: time series; anomalies; fuzzy logic; discrete mathematics; data mining; geoinformatics; 
geomagnetism

A short summary of the study
We will now describe, in a semi-formal way, what the study is dedicated to, and what will be carried out in it.

Let there be a time series f, defined on a finite, in common case, irregular set of nodes T = {t1 < . . . < tN}. 
The time series f is analyzed by an expert ε.

It is supposed that the expert ε has a point of view on the dynamic pattern of f in every node t ∈ T, and a 
number of questions is posed at this time. Let us formulate the first two questions:

Question 1: To what extent µɛf (t) ∈ [0, 1] is the dynamic pattern of the time series f the expert ɛ is 
interested in, expressed (how active is it) in the node t?
Question 2: How is the dynamic pattern of the time series f, the ɛ is interested in, alternating at 
the time moment t is the measure µɛf  increasing (decreasing) in the node t or passing through an 
extremal transition?

The answers for this questions form the basis of what is called a monitoring of activity of the time series f 
with the expert ɛ point of view. The measure of activity µɛf gives the key to the spot ɛ-anomalies: ɛ-anomalous 
moments of f are the moments t where µɛf (t) ≥ 0.75 (if some feature is expressed with the scale of [0, 1], then 
it’s a matter of course to consider its occurrences within the interval [0.75, 1] as anomalous).

Let us denote LA(µɛf ) the set of ɛ-anomalous nodes:

( ) { : ( ) 0.75}f fLA t T tme me= Î ³

Forming of LA(µɛf ) is also included into the problem of activity monitoring.
Due to the randomness of the time series f, its local anomalous nodes LA can comprise a subset in T 

which demands extra work (preliminary topological filtering (Gvishiani et al. 2003) and further clustering 
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(Mikhailov et al. 2003; Agayan et al. 2004; Soloviev et al. 2005)). The point is that the connected side-by-side 
and sufficiently large excesses of the measure µɛf  over the anomaly level 0.75 are of the main interest as it 
is them what should be considered expressions (traces) of global anomalies of f from the perspective of ɛ.

Let us denote A(µɛf ) their plurality:

1( ) { ,  . . . , }f LA A Ame =

The transition LA(µɛf ) → A(µɛf ) comes with the help of the DPS. algorithm. This is how the answer is obtained 
for the question 3.

Question 3: Which fragments of the time series f are considered interesting from the perspective of 
the expert ɛ?

The last question is formulated this way:

Question 4: How to compare and rank the ɛ-anomalies of f ?

DMA includes a corresponding implement which makes it possible to compare the fragments to each other 
and rank them (Gvishiani et al. 2008; Gvishiani et al. 2008), it will be told about that further. Here we shall 
list a couple of examples for the quantitative indicators of the anomalies Ai, inducing their ranking.

Example 1 Massiveness (continuity) mAi of an anomaly Ai: mAi = |Supp Ai| – number of nodes in the carrier of Ai.

Example 2 Activity µAi of an anomaly

The summary will follow the scheme displayed on Fig. 1, in the simplest suppositions, however, fully keeping 
the thoroughness of the analysis of a time series announced above.

A finite time series f (initial data)
Period of observation T – the finite regular number of nodes

1 1{  < . . . < },  ,  1,  . . . , 1N i iT t t t t h i N+= - = = -

Function f – a time series defined on T

( ) : Supp 
:  

|Supp |
f i

i i
i

t t A
A A

A

me
m

Î
=

Figure 1: The scheme of the analysis of a time series using the FL methods.
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: ,  ( ( )| )N
i i if T f f f t® = 

Localization of space T in the node t is realized with the fuzzy structures δt on T, normalized at t and decreas-
ing with the increase of the distance from t:

( ( ) 1)   (| | | | ( ) ( ))t t tt t t t t t t d d d= Ù - > - Þ £

The δt structures are called the measures of closeness on T to the node t. They center T around t by assigning 
the weight functions δt(t̄) to the nodes t̄, act as surroundings for t in T, and formalize the view of the expert 
ε on T at t (Gvishiani et al. 2003; Gvishiani et al. 2004).

In the examples given below, p stand for a non-negative parameter responsible for the scale of δ-localization: 
the higher p is, the stronger the localization is: in particular, p = 0 results in the global point of view on T, 
the same for each node.

Example 3

1.  The global measure of closeness (Fig. 2)

1

( ) 1
max( ,  )

p

t
N

t t
t

t t t t h
d

æ ö- ÷ç ÷ç= - ÷ç ÷ç ÷- - + ÷çè ø

2.  The local measure of closeness (Fig. 3)

| |
1

( )  
,   | |
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where r ≥ h – observation radius.

An expert ε (formalization)
Dynamical indicator D – a non-negative functional on T, parametrized by T

: ( )  D T T 

+´ ®F

where F(T ) is a function space on T .

Figure 2: The global measure of closeness.

Figure 3: The local measure of closeness.
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The values of the function D(f, t) are denoted Ff(t) and regarded as quantitative estimates of the behavior 
of the function f in a node t ∈ T according to the approach D to its dynamics.

There exists an open to supplementation set of basic indicators which showed a good performance in 
practice. Let us list some of them.

Example 4

1.  Energy
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where
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2.  Jaggedness

	

 | ( )| ( )
( | )

 ( )

g tt T

f

tt T

'f t t
L t

t

d
d

d

Î

Î

=å
å

� (2)

where f'g (t̄) is the f regression derivative with respect to the closeness δ
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3.  Scatterness
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where q > 0.

The dynamical indicators are related to the very natural and important but the simplest points of view of 
the expert ɛ on the dynamics of the time series f. The general case is combined from the simple ones, plus, 
the composition can’t be straight and mechanical. The point is that, initially, the dynamical indicators Df for 
different D are not comparable to each other and their junction additional efforts by means of the measures 
of maximality or dynamical activity of the indicator Df .

Measure of maximality mesmax (constructions)
Measure of dynamical activity µDf  is a function membership to the fuzzy concept of the “activity of the func-
tion f in the node t from the perspective of the indicator D” on T (Gvishiani et al. 2008; Gvishiani et al. 2008; 
Gvishiani et al. 2008c). The measure of activity µDf (t) results from the Df (t) indicator using one or another 
construction of the measure of maximality mesmax.

The measure of maximality mesmaxB(x) is a fuzzy structure on , which answers the following question 
for a finite weighted arrangement B = {(bk, ωk)|k

M
=1, ωk > 0}: “To what degree the number x is big modulo B?” 

In DMA, for a mesmax measure there are four constructions: “fuzzy comparisons”, “Kolmogorov averages”, 
“fuzzy means”, “iteration bounds” (Gvishiani et al. 2004; Zlotnicki et al. 2005; Gvishiani et al. 2008).
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For a measure µDf (t), the (Im Df , δt), which is an image of Df  centered in the node t with the help of the 
measure of closeness δt, acts as B:

(Im ,  ) = { ( ( ), ( ),  }f t f tD D t t t Td d Î

and

	 (Im , )
( ) mesmax ( )

f t
f fD

D t D t
d

m = � (4)

Example 5

1.  The “fuzzy comparison” construction: binary version.
1

( ) ( )
( )  ( ) ( )

( ) ( )
f f

f t t
f f

t T t T

D t D t
D t t t

D t D t
m d d

- -

-

Î Î

æ ö æ ö÷ ÷ç ç- ÷ ÷ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷+ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
å å

2.  The “fuzzy comparison” construction: gravitational version.
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3.  The “fuzzy comparison” construction: sigma version.
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4.  The “Kolmogorov averages” construction.

4 *( )  arctan 1fD t pm
p

= -

where p* is the solution of the equation
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Remark 1  The listed measures of activity µDf  possess the values within [–1, 1]. The proper measures of activity 

possess the values within [0, 1] and result from the transformation µDf  
→

 
1

2
fDm +

.

Measure of activity µɛf (constructions)
The transition Df  → µDf  translates the function f analysis into the fuzzy logic and fuzzy mathematics 
language (Gvishiani et al. 2003): the measures of activity µDf  for different D possess the values within the 
unified scale of the interval [0, 1] and can be combined in any proportions and quantities using numerous 
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FL operations and averagings of any type which will be denoted *. It becomes possible to instill the content 
to the complicated activity of f by the plurality of dynamical indicators D in the node t ∈ T:

	 ( ) ( ( ))*f D ft D tm mÎ= DD � (5)

It is the construction (1) by which the view of expert ε on the dynamics of f is commonly modeled (Gvishiani 
et al. 2004). Such modeling is an art in many respects, and it involves selection of basic dynamical indicators 
D(ε) and their appropriate junction *(ε):

	
( ) ( ) ( ( ))*f D ft D tm mÎ= D ( )ee e � (6)

Example 6

1. � Junctions * using the fuzzy conjunction  make it possible to consider all the basis dynamics from D(ε) 
simultaneously :

	
( ) � ( ( ))f D ft D tm mÎ= D ( )ee

� (7)

2. � Junctions * using the fuzzy disjunction ⊥ make it possible for every basic dynamic from D(ε) to approve 
itself :

	
( ) ( ( ))�f D ft D tm mÎ= D ( )ee � (8)

3. � Let us suppose that the expert ε gives initial precedence on the basic dynamics from D(E) in the form of 
weights ω(D), then one of possible junctions *, able to consider this fact will be the weighted averaging
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Monitoring of activity µƐf (concept)
Analysis of the measure µεf  and its basic components µDf

m, Dm ∈ D(ε) is the essence of the monitoring of f 
by an expert ε. It includes:

1. �Direct analysis of the µεf  activity which makes it possible to understand to what extent the 
dynamic of interest for ε is expressed on f (Fig. 4) for every moment t ∈ T. The result is the 
disjunctive partition of T in three pieces

	 ( ) ( ) ( )f f fT LB LP A L Ame me me= Ú Ú � (10)

(a)  LB  (µεf ): locally background nodes

	 ( ) { : ( ) [0; 0.5)}f fLB t T tme me= Î Î � (10.1)

(b)  LPA(µεf ): locally potentially anomalous nodes

	 ( ) { : ( ) [0.5; 0.75)}f fLP A t T tme me= Î Î � (10.2)

Figure 4: The function under examination.
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(c)  LA(µεf ): locally anomalous nodes

	 ( ) { : ( ) [0.75;1)}f fL A t T tme me= Î Î � (10.3)

2. �Trend analysis of the activity of µεf  based on regression derivatives: it helps to understand how is 
the f dynamics of ε’s interest t alternating at every moment t ∈ T : is it increasing, decreasing or 
passing through an extremal transition.

3. �statistical analysis of the total of the basic activities {µDf
m, Dm ∈ D(ε)} using mean and covariance 

characteristics µDf
m and Cov (µDf

m1, µDf
m2). The result is the coding of the behavior of f on T from 

the perspective of ε and the possibility of comparison with the behavior of another time series f 
on, generally speaking, another period T from the perspective of the same ε.

Remark 2 Real partitions (10) have close thresholds but not always equal, to ideal thresholds 0.5 and 0.75. It 
is not principal for further studies and therefore in the present paper is convenient to consider monitoring of 
activity to be ideal.

Measure and monitoring of activity (examples)
For a record f (Fig. 4), the simple measures of activity µLf  (Fig. 2) and µOf  (Fig. 3), were constructed. They 
correspond to the dynamical indicators of jaggedness (2) and scatterness (3). Afterwards, they are joined 
in the complex measures of activity using three approaches (7)–(9). On the constructed measures (Figs. 5 
and 7) and the initial record (Fig. 6 and 8), a partition is shown (10): blue color for the background nodes 
(10.1), green for the potentially anomalous nodes (10.2), and red for the anomalous nodes (10.3).

On the simple measures of activity µLf  (Fig. 2) and µOf  (Fig. 3) respectively, 6 and 5 anomalous areas 
were identified and marked red. On the basis of simple measures, three complex measures of activity were 
constructed: using the fuzzy conjunction (7) (Fig. 7a), using the fuzzy disjunction (8) (Fig. 7b), using the 
weighted average (9) (Fig. 7c). Correspondingly, 3, 8 and 5 anomalous areas were identified, respectively, 
whose configuration and location are different from the anomalous areas identified by the simple measures 
of activity. This proves the disjunctive, conjunctive and compromise character of the complex measures of 
activity (7–9) (Zlotnicki et al. 2005).

On Fig. 9a and Fig. 10a, the trend analysis of the µLf  are shown, based on the regression derivatives with 
respect to the sufficiently global measure of closeness δ. The result of the analysis is the partition of the µLf 
in increasing (red), decreasing (green) and flat areas (blue). As a result, a morphological separation of anomalies 
(Fig. 6a) trend components was carried out (Figs. 9b, 10b) (Gvishiani et al. 2008).

Figure 5: The measures of activity µDf (t): a) based on (2), b) based on (3).

(b)

(a)
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Figure 6: Anomalies marked out using the measures of activity (Fig. 5).

Figure 7: The measures of activity µεf (t): a) based on (7), b) based on (8), c) based on (9).

(a)

(b)

(a)

(b)

(c)
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Figure 8: Anomalies marked out using the measures of activity (Fig. 7).

Figure 9: a) Areas of monotoneness (red is for increase, green is for decrease); b) Reduction to the initial 
record.

(a)

(b)

(c)

(b)

(a)
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Global Ɛ-anomalies (conception)
Globally anomalous fragments of a time series f from the perspective of the expert ε (ε-anomalies) are the 
uplifts of the relief µɛf

anomalies of  uplifts of .ff m- ºe e

The second part of the study is dedicated to the search for uplifts on an arbitrary non-negative relief. Their 
search is realized using the DPS algorithm in two stages.

The DPS algorithm
Let X be a finite set, and A, B, . . . and x, y, . . . are the subsets and the points in it, respectively.

The density P on a subset X is a mapping of 2X × X into the interval [0, 1], increasing with respect to the 
first argument:

( ,  ) ( )AP A x P x=

, ( ) ( )A Bx X A B P x P x" Î Ì Þ £

The value of PA(x) is defined as the density of the subset A in the point x.
The subset A is called the α-perfect in X for α ∈ [0, 1], if

{ :  ( ) }AA x X P x a= Î ³

The process of construction of the maximal α-perfect subset X(α) in X is called the algorithm DPS (Agayan 
et al. 2011; Agayan et al. 2014):

( ) DPS( | , )X X Pa a=

The subset X(α) results from the intersection

1( )  ( )k
kX Xa a¥
==



where
1

( )
( ) { ( ) : ( ) }k

k k

X
X x X P x

a
a a a+ = Î ³

Figure 10: A fragment of initial record (Fig. 9): a) Areas of monotoneness (red is for increase, green is for 
decrease); b) Reduction to the initial record.

(a)

(b)
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The intersection 1k
¥
=  is necessarily achieved because it’s always finite due to finiteness of X and the multi-

plicity of Xk+1(α) into Xk(α) for all k = 0, 1, . . .

The search for Ɛ-anomalies: stage 1 – functional clustering
The search for ε-anomalies will be illustrated for the function f (Fig. 11) and the simple measure of activity 
µLf  (Fig. 12) corresponding to the dynamical indicator of jaggedness (2).

Now we define the density P on T by the measure of dynamic activity µDf : let ∆ > h be the local observation 
parameter, A is a subset in T, t – node from T, then

( )
( ) : [ , ]

| |
f

A

t
P t t t t A

T

em
= Î -D +D Çå

The result of the DPS algorithm operation with such density on T with a fixed α is the first part of the search 
for anomalous nodes for the function f on the period of observation T from the perspective of the expert ε 
(Fig. 13):

( ) DPS( | , , )fT T Pa a me=

Figure 11: The initial time series.

Figure 12: The corresponding activity.

Figure 13: DPS: step 1. Results of identification of anomalies on the indicator of activity.
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The set T(α) is assumed as a disjunctive union of the intervals [ak, bk], k = 1, . . ., m. Every [ak, bk] is located in 
T and has no gaps inside (Fig. 13):

1( ) [ , ]m
k k kT a ba ==Ú

The search for Ɛ-anomalies: stage 2 – interval clustering
Let X(a) be the totality of the intervals {[ak, bk]|1

m}, and let us introduce the measure of closeness ρ between 
two intervals from X(a):

1 1 2 2

1 1 2 2

1 2 1 2

|[ , ]|+|[ , ]|
([ , ], [ , ])

|min( , ),  max ( , )|
k k k k

k k k k
k k k k

a b a b
a b a b

a a b b
r =

The closeness p helps to construct the density P on X(a): if S ⊂ X(a), [ak, bk] ∈ X(a), then

max
[ , ] \[ , ] ([ , ], [ , ])

k kk kk ka b S a b k ks a b a br - --- Î=P

The result of the algorithm operation DPS with such density on X(a) with a fixed b is the second part of the 
search for anomalous points for the function f on the period of observation T from the perspective of the 
expert ε (Figs. 14, 15)

( )( ) DPS ( ( )| , , )fX Xa b a b me= P

On the second step, the DPS algorithm indicates which intervals in X(a) should additionally be joined into 
one anomaly – these are exactly the intervals from X(a)(b) (Agayan et al. 2014).

Thus, the finally anomalous intervals for the function f, from the perspective of the expert ε, would be the 
fairly isolated ones from X(a) which are not included into X(a)(b), and also the new intervals which result 
from uniting the intervals from X(a)(b).

Let us denote the totality of all the anomalies A = A(µεf ):

1{ ( )| }L
l l f lA A me == =A

Figure 14: DPS: step 2. Clustering of the intervals.

Figure 15: DPS: final result. Reduction to the initial function.
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Studying the Ɛ-anomalies
Let us denote A(µεf ) = {Al|

L
l = 1} the totality of all the ε-anomalies detected by DPS. Any ε-anomaly Al defines 

the fragment fl = f |Al
 of the time series f and could be studied according to the program listed above with 

respect to the measure µεf  (the internal Al-monitoring of activity, superanomalies inside Al , and so on). It is 
natural to call such study of Al the internal study. As an ambivalent an external study of the anomaly Al is 
supposed, characterizing Al among the other anomalies from A(µεf ). Let’s talk about it more in detail.

There are many characteristics of ε-anomalies,  each of them ranks the ε-anomalies in A(µεf ) in its own way. 
The characteristics can be simple and complex (an analogy to the simple and complex measures of activity). 
Keeping in mind a compromise between simplicity and thoroughness, mentioned in the beginning, we shall 
list five natural characteristics and display how to make the complex ones from them.

The DPS algorithm identified 44 anomalies on the record f (Fig. 15). Let us construct the simple 
characteristics from them:

1. Massiveness (continuity) of the anomaly Al (Fig. 16):

| |l lm A A=

Figure 16: The massiveness of anomalies.

Figure 17: Mean activity of the anomalies.

2. Mean activity of the anomaly Al (Fig. 17):

( ) :

| |
f l
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3. Mean energy of the anomaly Al (Fig. 18):  
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Figure 19: Mean jaggedness of the anomalies.

Figure 20: Mean scatterness of the anomalies.

4. Mean jaggedness of the anomaly Al (Fig. 19):
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Figure 18: Mean energy of the anomalies.

5. Mean scatterness of the anomaly Al (Fig. 20):
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As a result, five totalities occur:

1 1

1 1 1

( ) { | }; ( ) { | };

( ) { | }; ( ) { | }; ( ) { | }

L L
f l l f l l

L L L
f l l f l l f l l

m mA A

E EA L LA O OA

me m me m

me me me
= =

= = =

= =

= = =

A A

A A A



Agayan et al: The Study of Time Series Using the DMA Methods and  
Geophysical Applications

Art. 16, page 15 of 21

The comparison of every anomaly A with the corresponding indicators of other anomalies from A(µεf ) 
based on the measure of maximality mesmax gives five indices of the anomaly A, similar to dynamical 
indicators:

1.  indmA = mesmax mA (Fig. 21)
mA(µεf)

Figure 21: Index of anomalies based on massiveness.

Figure 22: Index of anomalies based on mean activity.

Figure 23: Index of anomalies based on mean energy.

2.  indmA = mesmax µA (Fig. 22)
µA(µεf)

3.  indEA = mesmax E A (Fig. 23)
E A(µεf)

4.  indLA = mesmax L A (Fig. 24)
L A(µεf)
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5.  indOA = mesmax O A (Fig. 25)
O A(µεf)

Figure 24: Index of anomalies based on mean jaggedness.

Figure 25: Index of anomalies based on mean Scatterness.

Figure 26: Complex index of anomalies.

Simple indices, using the FL * operations, produce the new complex integral indices of anomalies ind.

Example 7  A complex index based on two simple indices (Fig. 26)

	
ind ind

ind
2

L OA A
A

+= � (11)

Example 8  On Fig. 27a, five of 44 anomalies identified using the indLA index are displayed, on Fig. 27b 
anomalies identified using the indOA are displayed, and on Fig. 27c anomalies marked out using the indA 
index (11) are shown.

Measure and monitoring of geomagnetic activity
Let us analyze the geomagnetic monitoring (10–10.3) on the basis of the measure of activity µ = µLf (4) 
constructed according to the dynamical indicator of irregularity Lf (2). The application of this measure to the 
ground-based observation data from the global geomagnetic observatory network brought an opportunity 
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of spatial-temporal analysis of geomagnetic activity and the estimation of the dynamics of magnetic storm 
propagation in realtime (Soloviev et al. 2013; Gvishiani et al. 2014; Soloviev et al. 2016). The usage of the 
measure makes it possible to estimate the geomagnetic activity in various regions of the Earth within a 
single scale, taking its regional specification into account. The developed measure allows the analysis of 
the internal fine structure of magnetic storms, the dynamics of their development both around the globe 
and within particular regions. When estimating the geomagnetic activity, the whole range of initial data 
is efficiently considered in, as the temporal resolution of the measure matches the initial data sampling 
frequency.

The example of application of the developed measure of anomality to the geophysical data analysis was 
the study of magnetic activity using the time series from the magnetic observatory “Saint Petersburg” (IAGA 
code SPG). The initial observatory data is available at the Russian-Ukrainian Geomagnetic Data Center website  
(http://geomag.gcras.ru). For illustration purposes, the data for the period March 28 – April 8, 2016 was 
taken, as it contains the fragments of both increased (April 2–3, April 7–8) and decreased (March 31 – April 1,  
April 5) magnetic activity.

According to the planetary Kp index data (Fig. 28), during the given time period the magnetic conditions 
varied from calm (the Kp index values were from 0 to 2) and slightly disturbed (Kp = 2 . . . 3) to disturbed 
(the Kp index values were up to 5+). The disturbed data fragments corresponded to the magnetic storms 
which occurred from April 7, 2016, 17:00 UT, to April 8, 2016, 02:00 UT, and the increased magnetic activity 
on April 2–3, 2016.

The magnetic disturbance, which lasted from April 2, 2016, 15:00 UT to April 3, 2016, 03:00 UT, was char-
acterized first by the increase of the amplitude of variations of the components X, Z and the total intensity 
F by 70–80 nT, after which the values of these components smoothly decreased to –180. . . –200 nT from 

Figure 27: Anomalies marked out using: a) indLA; b) indOA; c) ind A.

(a)

(b)

(c)

http://geomag.gcras.ru
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their initial levels. This minimum took place approximately at midnight on April 2–3, next the values of the 
components reached the initial values by 03:00 UT, April 3, 2016. The magnetic storm which took place on 
April 7–8 was characterized by rapid evolution. During the sudden commencement period (about 17:11 UT) 
the amplitude of the variations of the X component at the Saint Petersburg magnetic observatory increased 
respectively to its background value from 14565 to 14580 nT. During the main phase of the magnetic storm, 
which evolved approximately from 19:00 to 21:53 UT, the decrease by about 150 nT for the X component, 
180 nT for the Y component, and more than 200 nT for the Z component took place. According to the data 
records of several Russian magnetic observatories located in the same latitudinal belt, the main phase was 
accompanied by the decrease, which varied between 100–150 and 250 nT for the X and Y components, and 
was up to 300 nT for the Z component. The recovery phase of the magnetic storm lasted from about April 7, 
2016, 22:00 UT to April 8, 2016, 02:00–02:30 UT. During this phase, some oscillations in the magnetic field 
intensity with a period of about 1 hour and the maximal amplitude of about 140–150 nT were observed. By 
the end of the recovery phase, the magnetic field at the observatory reached the values of the same level, 
which was registered before the storm onset.

The monitoring of geomagnetic activity for its Northern component X was performed using the measure 
of activity µ = µLf. Its results are displayed on Fig. 29. The geomagnetic events listed above were considered 
anomalous according to the measure µ and marked red on the plot. The data registered during the period 
of less disturbed magnetic field (e.g., for the period of 28–29 March), were recognized as potentially anoma-
lous and marked green and purple on the plot (the potentially anomalous fragments are divided into two 
parts by the threshold value 0.61). Finally, for the period of quiet magnetic field, March 31–April 1, the val-
ues of the measure µ practically do not exceed the threshold value 0.5, and no data fragment for this period 
was classified as anomalous.

Discussion
The comparison of the result of monitoring with the planetary Kp index data demonstrated that the clas-
sification of magnetic activity using the described measure does not contradict the classical methods for its 
estimation. At that, the principal advantages of the measure of anomality should be mentioned:

1. �the matching of the temporal resolution of the measure to the initial sampling frequency of the 
time series;

2. �the estimation of anomality using the records from different observatories in a unified and normal-
ized scale.

The first advantage gives an opportunity of application of the measure to the monitoring of magnetic dis-
turbance with minimal temporal delay in realtime mode. At that, the estimation of the magnetic activity 
is performed less raw than using the traditional 3-hour K index. The second advantage makes it possible 

Figure 28: Planetary Kp index values for the period from 28.03.2016 to 08.04.2016.
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to study the magnetic disturbance regardless of latitudinal location of the observatory, taking the regional 
specifications into account.

Conclusions
An exponential growth of digital observations of the Earth’s environment acts as a challenge for the develop-
ment of adequate mathematical methods of data mining and systems analysis of input data. It is the usage 
of these methods that provides an opportunity operational extraction of useful information, such as specific 
geomagnetic events of different origin, from the large volumes of continuously collected data. The approach 
to the studying of time series based on fuzzy logic, proposed in the paper, is largely focused on this chal-
lenge and finds its practical application. In particular, several algorithms based on DMA (Soloviev et al. 2009; 
Bogoutdinov et al. 2010; Soloviev et al. 2012; Sidorov et al. 2012; Zelinskiy et al. 2014) are integrated into 
Russian-Ukrainian Geomagnetic Data Center (http://geomag.gcras.ru) and used for continuous automated 
detection of anthropogenic disturbances and geomagnetic pulsations in observatory data.

Further research plans include, first of all, the expansion of analysis from a single time series f to a  
network S of time series fs(t), s ∈ S. This will allow to define the monitoring of activity in network, anomalous 
events in network, and more.

The results presented in this paper rely on data collected at magnetic observatories. We thank the national 
institutes that support them and INTERMAGNET for promoting high standards of magnetic observatory 
practice (www.intermagnet.org).

The research has been carried out in the framework of the Federal target program of the Ministry of 
Education and Science of the Russian Federation, agreement No. 14.607.21.0058, project unique identifier 
RFMEFI60714X0058, and is a part of research aimed at the creation of the experimental prototype of the 
hardware and software complex for monitoring and detection of extreme geomagnetic phenomena using 
ground-based and satellite data.

Figure 29: The results of classification of initial data into background (blue), weakly anomalous (green), 
anomalous (purple) and strongly anomalous (red) fragments using the measure of anomality. On the 
upper plot the initial record is shown, on the bottom plot the measure of anomality is displayed, calcu-
lated for this record.

http://geomag.gcras.ru
http://www.intermagnet.org
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