Frequent Itemset Mining for Big Data Using Greatest Common Divisor Technique

Authors

  • Mohamed A. Gawwad Cairo University, Faculty of Engineering, Computer Engineering Department https://orcid.org/0000-0002-5652-3244
  • Mona F. Ahmed Cairo University, Faculty of Engineering, Computer Engineering Department
  • Magda B. Fayek Cairo University, Faculty of Engineering, Computer Engineering Department

DOI:

https://doi.org/10.5334/dsj-2017-025

Keywords:

data mining, frequent itemset mining, greatest common divisor, big data

Abstract

The discovery of frequent itemsets is one of the very important topics in data mining. Frequent itemset discovery techniques help in generating qualitative knowledge which gives business insight and helps the decision makers. In the Big Data era the need for a customizable algorithm to work with big data sets in a reasonable time becomes a necessity. In this paper we propose a new algorithm for frequent itemset discovery that could work in distributed manner with big datasets. Our approach is based on the original Buddy Prima algorithm and the Greatest Common Divisor (GCD) calculation between itemsets which exist in the transaction database. The proposed algorithm introduces a new method to parallelize the frequent itemset mining without the need to generate candidate itemsets and also it avoids any communication overhead between the participated nodes. It explores the parallelism abilities in the hardware in case of single node operation. The proposed approach could be implemented using map-reduce technique or Spark. It was successfully applied on different size transactions DBs and compared with two well-known algorithms: FP-Growth and Parallel Apriori with different support levels. The experiments showed that the proposed algorithm achieves major time improvement over both algorithms especially with datasets having huge number of items. 

Downloads

Published

2017-05-18

Issue

Section

Research Papers