Frequent Itemset Mining for Big Data Using Greatest Common Divisor Technique
DOI:
https://doi.org/10.5334/dsj-2017-025Keywords:
data mining, frequent itemset mining, greatest common divisor, big dataAbstract
The discovery of frequent itemsets is one of the very important topics in data mining. Frequent itemset discovery techniques help in generating qualitative knowledge which gives business insight and helps the decision makers. In the Big Data era the need for a customizable algorithm to work with big data sets in a reasonable time becomes a necessity. In this paper we propose a new algorithm for frequent itemset discovery that could work in distributed manner with big datasets. Our approach is based on the original Buddy Prima algorithm and the Greatest Common Divisor (GCD) calculation between itemsets which exist in the transaction database. The proposed algorithm introduces a new method to parallelize the frequent itemset mining without the need to generate candidate itemsets and also it avoids any communication overhead between the participated nodes. It explores the parallelism abilities in the hardware in case of single node operation. The proposed approach could be implemented using map-reduce technique or Spark. It was successfully applied on different size transactions DBs and compared with two well-known algorithms: FP-Growth and Parallel Apriori with different support levels. The experiments showed that the proposed algorithm achieves major time improvement over both algorithms especially with datasets having huge number of items.
Published
Issue
Section
License
Copyright (c) 2017 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms. If a submission is rejected or withdrawn prior to publication, all rights return to the author(s):
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Submitting to the journal implicitly confirms that all named authors and rights holders have agreed to the above terms of publication. It is the submitting author's responsibility to ensure all authors and relevant institutional bodies have given their agreement at the point of submission.
Note: some institutions require authors to seek written approval in relation to the terms of publication. Should this be required, authors can request a separate licence agreement document from the editorial team (e.g. authors who are Crown employees).