Distributed Persistent Identifiers System Design

Authors

DOI:

https://doi.org/10.5334/dsj-2017-034

Keywords:

Identifier systems, persistent identifiers, distributed systems, Distributed Hash Tables, peer-to-peer networks, PID, P2P

Abstract

The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID) systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009) and further elaborated by Golodoniuc et al. (2016) and Car et al. (2017).

Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems.

In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

Author Biography

Jens Klump, CSIRO Mineral Resources, Perth, WA

Jens Klump is a geochemist by training and OCE Science Leader Earth Science Informatics in CSIRO Mineral Resources and is based in Perth, Western Australia. His involvement in the development of publication and citation of research data through Digital Object Identifiers (DOI) sparked further work on research data infrastructures, such as enterprise data management systems and long-term digital archives. Jens current work focuses on data in minerals exploration, looking at data capture and data analysis. This includes automated data and metadata capture, sensor data integration, both in the field and in the laboratory, data processing workflows, and data provenance, but also data analysis by statistical methods, machine learning and numerical modelling. Jens is the vice-president of the International Geo Sample Number Implementation Organization (IGSN). The organisation coordinates the development and introduction of persistent identifiers for physical specimens of research materials.

Downloads

Published

2017-06-28