Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations
DOI:
https://doi.org/10.5334/dsj-2017-037Keywords:
MCMC, Markov chain Monte Carlo, Incomplete data, Nonresponse, Joint modeling, Conditional modelingAbstract
Incomplete data are ubiquitous in social sciences; as a consequence, available data are inefficient (ineffective) and often biased. In the literature, multiple imputation is known to be the standard method to handle missing data. While the theory of multiple imputation has been known for decades, the implementation is difficult due to the complicated nature of random draws from the posterior distribution. Thus, there are several computational algorithms in software: Data Augmentation (DA), Fully Conditional Specification (FCS), and Expectation-Maximization with Bootstrapping (EMB). Although the literature is full of comparisons between joint modeling (DA, EMB) and conditional modeling (FCS), little is known about the relative superiority between the MCMC algorithms (DA, FCS) and the non-MCMC algorithm (EMB), where MCMC stands for Markov chain Monte Carlo. Based on simulation experiments, the current study contends that EMB is a confidence proper (confidence-supporting) multiple imputation algorithm without between-imputation iterations; thus, EMB is more user-friendly than DA and FCS.
Published
Issue
Section
License
Copyright (c) 2017 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms. If a submission is rejected or withdrawn prior to publication, all rights return to the author(s):
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Submitting to the journal implicitly confirms that all named authors and rights holders have agreed to the above terms of publication. It is the submitting author's responsibility to ensure all authors and relevant institutional bodies have given their agreement at the point of submission.
Note: some institutions require authors to seek written approval in relation to the terms of publication. Should this be required, authors can request a separate licence agreement document from the editorial team (e.g. authors who are Crown employees).