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1. Introduction
As a type of high-dimensional massive data, time series are common in fields such as meteorology, finance, 
geology, medicine, electronic information, and network security. They are also a major research subject in 
data mining (Esling and Agon 2012). Time series research includes similarity searching (Rakthanmanon 
et al. 2012), clustering (Aghabozorgi and Wah 2014), classification (Petitjean et al. 2015), pattern recognition 
(Begum and Keogh 2014), and prediction (Aljumeily and Hussain 2015). Among these, time series 
classification (TSC) has become a hot topic because of its fundamentality. Time series classification obtains 
identification features that can distinguish between different time series by learning from training sets with 
known class tags, and then automatically assign class tags to untagged time series.

Initially, the research staff used the nearest neighbor algorithm to process time series classifications (Ding 
et al. 2008; Batista et al. 2011; Deng et al. 2013; Alonso et al. 2005; Jeong et al. 2011; Buza 2011). Despite 
the fact that the nearest neighbor algorithm was simple and involved fewer parameters, new research 
suggested that it needed to search and store the entire dataset during the time series classification process, 
which resulted in relatively high time and space complexity. Researchers hoped to achieve high classification 
accuracy and derive implicit messages from the experiment; this could not be achieved with the nearest 
neighbor algorithm. Additionally, these methods often resulted in unsatisfactory results because some time 
series were very similar, and the resulting noise could obscure the subtle differences between similar time 
series. Therefore, the above algorithm was not effective at classifying time series that had subtle differences.

Researchers have been working to solve the above problem with a new classification algorithm that better 
solves time series classification problems. Ye, Keogh (2009), and other researchers first introduced shapelet 
algorithms to classify time series that only had minor partial differences. Shapelet algorithms use partial 
time series fragments for classification, which reduce noise and lead to better accuracy and robustness. 
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Shapelet classification could also produce results with higher explanatory power, which could clearly show 
class differences and help researchers better understand data. Since then, shapelet classification algorithms 
have been widely used in various fields involving time-series studies (Hartmann 2010; Xing et al. 2011; 
Shajina et al. 2012). Compared with the existing classification, shapelet time series classification algorithms 
were more accurate, but the shapelet extraction process was slow, which made it prohibitive for very large 
datasets. Therefore, shapelet classification research has mostly focused on accelerating the extraction process. 
Ye and Keogh (2011), Mueen (2011), He (2012), Rakthanmanon (2013), and other researchers proposed 
improved algorithms that expedited the process. Lines and Bagnall (2012) comprehensively analyzed the 
pros and cons of several quality metrics during the extraction process. However, these improvements did not 
fundamentally address the problem of how to best use shapelet classification algorithms to solve time series 
classification. Bagnall (2013) and other researchers demonstrated the importance of using an integrated 
approach to isolate data transformation from the classification algorithm. Lines, Davis (2012), and other 
researchers proposed the concept of shapelet transformation, and broke the restriction requiring shapelet 
classification to use decision trees. They utilized the distance of the original time series from the shapelets 
to convert data and create a new dataset, and then used the generic classifier for classification.

This article introduces PAA time series representation and an efficient subsequence matching method in 
the shapelet classification algorithm, and proposes an improved shapelet conversion classification algorithm. 
The proposed algorithm preprocesses the original data with a PAA time series representation to reduce data 
dimensions, and then uses highly efficient subsequence matching methods to simplify the subsequence 
distance calculation during the extraction and conversion processes of the shapelet classification algorithm 
to reduce computing complexity and improve efficiency. We made the following contributions: (1) We 
proposed a shapelet conversion classification algorithm based on highly efficient subsequence matching; (2) 
We studied the impact of PAA representation to process the original time series on shapelet classification; (3) 
We carried out experiments on real datasets and validated that the proposed method is feasible and efficient; 
(4) We analyzed the results using a variety of common classifiers to convert shapelet classification data.

This paper is organized as follows. Section 2 briefly provides necessary definitions. Section 3 describes 
the proposed shapelet conversion classification algorithm based on highly efficient subsequence matching. 
Section 4 includes our experiment on a public dataset, shows the experimental results, and presents our 
analysis and discussion of the results. Finally, Section 5 summarizes the paper.

2. Definitions and notation
The key terms are as follows:

Time series: A time series is a series of chronologically ordered real data obtained at regular intervals, 
T = t1, t2,…, tm, in which ti can be any infinite number and m is the length of T.
Time series subsequence: A time series subsequence is a fragment of a complete series, 

1 1, , ,l
i i i i lS T t t t+ + −= = … , in which l is the length of S (l < m), and i is the subsequence starting position.

Time series classification: For a time series collection with size n, Q = {T1, T2,…, Tn}, in which Ti is 
consist of m real-valued attributes and a class label c. That is,

	 1 2, , , ,i mT t t t c= …< >� (1)

The task of time series classification is to classify the time series of Ti, and assign class label c to each.
Time series Euclidean distance: The Euclidean distance of time series S0 and T0 that are the same 
length is the sum of corresponding square dot difference, i.e.,

	 ( ) ( )20 0 1
dist ,

l

i ii
S T s t

=
= −∑ � (2)

Subsequence distance: Generally, the distance of subsequence S and time series T is the minimum 
distance of all series of T with length l to S, i.e., ( ) ( )dist , min dist , l

i iS T S T= .

3. Shapelet transformation classification algorithm based 
on efficient subsequence matching
The shapelet transformation method is much more accurate than traditional classification algorithms. However, 
the high computational complexity of the optimal shapelet extraction process is very time consuming. Therefore, 
the efficient subsequence matching algorithm was introduced to the shapelet transformation method. The efficient 
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subsequence matching algorithm applies the strategy of roughly screening first, then finely screening second, which 
eliminates unnecessary calculations based on rough estimates to obtain a set of possible matching subsequence. 
Then, it uses the DTW distance calculation method to accurately calculate the final matching subsequence and the 
distance. Applying an efficient subsequence matching algorithm during the optimal shapelet extraction process can 
significantly reduce series distance calculation complexity and ultimately improve algorithm classification efficiency.

3.1. PAA time series representation
PAA representation was applied to high-dimensional time series to achieve efficient storage and simplified 
computation. PAA representation is a general approximation representation method, which was proposed 
by Keogh (2011). It is useful for dimension reduction of time series, it has relatively good indexing speed 
and flexibility, and it also slightly de-noises. As shown in Figure 1, PAA representation segments time series 
based on fixed length, which divides the series into same-length segments and takes the average of each 
segment to approximately represent the series segments and establish an index.

PAA representation is determined by the time series’ compression ratio v (ie segment length); the larger 
the v, the greater the dimension reduction, which means more information will be lost; on the contrary, the 
smaller the v, the less the dimension reduction, which means higher approximate representation quality. 
Therefore, when applying PAA representation, it is important to balance dimension reduction and quality.

3.2. Efficient subsequence matching algorithm
The most basic but deterministic part of time series data mining tasks is calculating the distance between the time 
series and matching based on their similarities. The commonly used methods for calculating the distance for a large 
number of high-dimensional, non-aligned time series are very computationally complex, which means that they are 
very time consuming despite simple Euclidean distance. Vineetha Bettaiah et al. (2014) proposed an efficient time 
series subsequence matching method to solve this problem. The method ignores small fluctuations within the time 
series and identifies crests and troughs that will significantly determine the overall shape of time series. It treats local 
maximum and minimum points as the main breakpoints, segments the time series, matches the rough prior to the 
actual distance computation to get possible matching series segments, and computes the accurate value.

Algorithm 1: Efficient_subsequence_matching (T1, T2)

(p1, p2, p3, …, pN) = Finding_Breakpoints (T1);
(q1, q2, q3, …, qM) = Finding_Breakpoints (T2);
A = Relational_Matrix (p1, p2, p3, …, pN);
B = Relational_Matrix (q1, q2, q3, …, qM);
C = Matching_Matrix (A, B);
Matching_List = Matching_Breakpoints (C);
return (Matching_List);

Figure 1: PAA representation of time series.
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The algorithm first divides the time series into monotonous non-decreasing segments and monotonous 
non-increasing segments. It then treats each endpoint segment as the local minimum or minimum value of 
each time series, and calculates based on the increment (decrement) after the maximum value. It calculates 
the average increment or decrement value of the corresponding maximum value, selects the points with 
absolute values above the average as key breakpoints, and then creates indexes with its corresponding series 
number in the time series and point value. It then checks and gets the time series between the adjacent local 
minimum value points to ensure no omissions exist, and gets the final set of key segments. As shown in 
Figure 2, the time series partition with the key time series segment breakpoints and endpoints.

Create a set {p1, p2, p3,…, pN} with the key breakpoints extracted from the time series T1, and construct a 
N*N logical matrix A with this set aij, which has any elements in A, is a vector from pi to pj, which indicates 
the relationship between pi and pj. Similarly, construct the M*M logical metrics B with key breakpoints {q1, 
q2, q3,…, qM}. If the relationship between pi and pj within T1 is similar to the relationship between ql and qk 
within T2, then the logical vector aij and blk are approximately the same. In this case, the series of points pi 
and pj may match series of ql and qk, and point pi corresponds to ql, pj corresponds to qk, respectively.

Iterate through vectors in matrices A and B to construct a matching matrix C, and compute the matching 
of each breakpoint in C. If cil of C is a large value, points pi and ql is most likely match; if the value of cjk is 
0, pj and qk are less likely a match. The algorithm provides a rough estimate and may lead to false positives. 
It therefore requires verifying calculations after the matching process to remove false matches. Then, it 
determines the ultimate matching points according to the value, calculates the accurate distance, and takes 
the minimum as the distance of the time series subsequence.

3.3. Shapelet transformation classification algorithm based 
on efficient subsequence matching
Shapelet conversion classification algorithms extract the local time series characteristics, ignore data 
without obvious features, and replace overall data with distinguishing parts to classify. Shapelet conversion 
algorithms have greatly improved efficiency and accuracy, but the computational complexity of the shapelet 
extraction process is still high. For a dataset Q with n time series of length m, the candidate shapelets series 
number is O(nm2), and the computation complexity for the distance of each shapelet and Q is O(nm2), thus, 
the complexity of the entire shapelet extraction algorithm reaches O(n2m4). Therefore, shortening the time 
series length or simplifying the calculation distance can effectively improve the shapelet extraction algorithm 
efficiency. So, the PAA time series representation and an efficient subsequence matching algorithm were 
correspondingly introduced to improve shapelet time series classification efficiency.

Since the original time series is too long and its classification features may only be reflected in some 
segments, using a common classifier will produce results only slightly better than random guessing, which 
provides no practical value. Therefore, features are extracted in a training set, namely shapelets extraction, 
to extract a class of time series that is most different from other fragment types. When dealing with the new 
dataset, the shapelets are used to transform the original time series, and then build a common classifier for 

Figure 2: Subsequence matching section.
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classification. As shown in Figure 3, the marked part is one of the series which has better distinguishing 
features, i.e., the optimal shapelet.

3.3.1. Standardization and dimension reduction of the original series
Scaling may be different in the experimental data, so it is necessary to standardize to ensure that matching 
is performed in the same dimension to achieve the best matching results. Then, use the PAA representation 
mentioned in section  3.1 to perform dimension reduction to the original data within an acceptable 
simplification range. To represent T = t1, t2,…, tm with PAA representation with segment length v, we get 

1 2 /, , ,i m vT t t t′ ′ ′= … , wherein the segment length v is the compression ratio. It has good approximation to use 
PAA representation to represent time series, which can effectively achieve dimensional reduction of the 
original time series.

3.3.2. Shapelet candidate selection
Generally, the algorithm iterates original time series with a specified range with a sliding window algorithm 
to obtain all shapelet candidates. For a time series containing n datasets Q = T1, T2,…, Tn, the candidate set 
of its shapelets series is the union of candidate sets of each series. Setting the shapelet length as l, we can 
obtain (m–l) + 1 shapelet candidates within a time series of length m. The standardized subsequence of 
length l obtained from the series can be expressed as Wi,l, then, all subsequence sets of length l in dataset 
Q are:

	 { }1, 2, ,l l l n lW W W W= …∪ ∪ ∪ � (3)

Then, all candidate shapelets set within Q are:

	 { }1      min 3,  maxmin min maxW W W W m+ ∪…∪= ≥ ≤∪ � (4)

Set W includes ( )
max

min
1

l
W n m l

=
= − +∑  candidate shapelets.

3.3.3. Efficient series matching algorithms to extract the optimal shapelets
Due to high computation requirements, the time series distance calculation generally uses a simple Euclidean 
distance metric. From Section 2, we know that we can take the minimum distance of S and all subsequence 
in Ti with length l as the distance between the time series Ti and shapelet S of length l, i.e.,

	 ( ) ( ), dist , min dist , l
S i i i iD S T S T= = � (5)

Shapelet extraction tasks determine the most distinguished shapelets. Thus, absolute subsequence distance 
accuracy is not required. We can calculate the distance of shapelet S to all series in dataset Q with an effective 
subsequence matching algorithm:

	 ,1 ,2 ,, , ,S S S S nD D D D= …< >� (6)

Figure 3: Time series shapelet.
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We need to assess shapelet quality to obtain the best classification shapelets. The most common methods 
are information gain, the Kruskal-Wallis test, the F statistical test, and the Mood median test. We use the 
classification quality of each shapelet as an indicator to sort all shapelets and select the first k0 shapelets as 
the preliminary results.

We need to process the preliminary shapelets to make shapelets more accurately and comprehensively 
represent the time series class characteristics. First, there could be overlapping shapelets when they are 
extracted from the same time series, resulting in redundant computation.

Thus, we need to filter the series with an overlapping exponent e, to remove shapelets that overlap more 
with others. Second, to further reduce the number shapelets, simplify calculation, and extend shapelet 
dissimilarity, we need to cluster shapelets with exponent k and select a shapelet from each class as to 
represent time series features more comprehensively.

3.3.4. Shapelet transformation of the original series
After the above steps, we obtained the final k shapelets. Then, the shapelets were used to transform the 
original series. Shapelet transformation converts the shapelet classification problem to a general classification 
problem, so that the solution is no longer restricted to a decision tree, but a variety of common classifiers.

Shapelet transformation is achieved by calculating the subsequence distance. For dataset Q, we calculated 
the distance of Ti to k shapelets subsequence Di,1, Di,2,…, Di,k, where Di,k = dist(Sk, Ti). We created Pi = Di,1, Di,2, 
…, Di,k as a new entity in the dataset, and constructed P1, P2,…, Pn as a new dataset P, i.e., we transformed the 
dataset. In the new dataset P, the entity Pi represents the original time series Ti, and each column attributes 
of the entity was associated with a shapelet. We used a common classifier to classify the new dataset P to 
determine the class of the original series.

Algorithm 2: Improved_Shapelets_Transform (T1,T2)

for Ti in Q do
Ti = PAA (Ti, v);
for l = min to max do
Wi,l = Slidingwindow_Traverse (Ti, l);
for S in Wi,l do
Matching_List = Efficient_sunseries_matching (S, T);
Ds = Calculating_Sub_Distance (Matching_List);
qualitys = Evaluation (S, Ds);
shapelets.add (S, qualitys);
shapelets = Taking_First_k0(Reorder (shapelets, qualitys));
shapelets = Filter_Selfsimilar (shapelets);
k_shapelets = Cluster (shapelets, k);
P = Shapelets_Transform (Q, k_shapelets)
Classification_Result = General classification (P);
return (Classification_Result);

4. Computational Experiments
The experiments were conducted in the Java environment integrating with the Weka platform. The 
computer’s configurations were as follows: Windows 7, 8G memory, Intel (R) Core (TM) i7-3770 CPU @ 3.40 
GHz.

The experiments were designed to verify the feasibility of integrating the PAA representation and efficient 
subsequence matching method into the shapelets conversion classification algorithm. The experiments 
consisted of the following steps:

1.	 To select the appropriate parameters of PAA Representation, we applied two different time series 
classification methods, including direct classification and the shapelet classification method based on 
PAA Representation. We completed ten-fold cross validation on the classification of the whole dataset 
with the Naive Bayes classifier and analyzed the runtime and classification accuracy.

2.	 We applied conventional shapelet extraction based on PAA Representation with and without efficient 
sequence matching to process the whole dataset respectively, and compare the computation complexity.

3.	 We completed train-test classification with SVM, logistic regression, C4.5 decision trees, random forests, 
and other general classification algorithms to verify the improved algorithm’s accuracy.
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4.1. Test Data
Part of the experimental data consisted of five datasets from the UCR Time Series Database including 
ECGFiveDays, GunPoint, DiatomSizeReduction, Ham, and Herring. The rest comes from UCI series library 
shared by Professor Keogh’s experiment team at the University of California, which included a total of 8 
datasets of the X-ray image contour series of human finger bones at different ages (infant, youth, juvenile). 
As shown in Table 1, these 13 public datasets were divided into training and test sets in the experiments. 
The experimental data was considered to be generalized and representative because records with various 
time series, lengths, and classes were included in the datasets.

4.2. Quality Evaluation of Shapelets Extraction
In the early stage, information gain was characterized as the indicator of shapelets extraction quality (Ye and 
Keogh 2011; Mueen and Keogh 2011). Information gain (IG) is an asymmetric metric measurement method 
used to measure the difference between two probability distributions. In classification, information gain 
is calculated in terms of data properties, and can be used to measure each property’s information size. 
In section 3.3, based on the sorted distance set Ds, the quality of candidate series S can be evaluated by 
calculating the maximum information gain of every possible split point (sp).

Relative information gain using KW, F-stat, and MM does not need clearly segmented Ds, and can 
significantly reduce the overhead time (Lines and Bagnall 2012). Jon Hills et al. (2014) demonstrated 
that in most time series dataset classifications, F-stat performed better in classification accuracy and time 
consumption in shapelet quality evaluation compared with other indicators. They suggested, “The F-stat 
should be the default choice for shapelet quality.”

The F statistic is used for testing hypotheses on the mean difference of the dataset consisting of C class 
samples. The statistical value of the hypothesis test indicated the difference proportion within and between 
groups. The greater the statistical value, the greater the difference between groups and the smaller the 
difference within a group. High-quality shapelets have smaller distances to inner class members, and have 
larger distances to members outside the class. Therefore, shapelets with a good classification quality will 
generate greater F-stat values. For Ds = <Ds,1 Ds,2,…,Ds,n>, they will be grouped based on their categories so 
that Di may include all distances between the candidate shapelet S and the time series in the corresponding 
category i. Then, the F-stat for quality evaluation of shapelet S is:

	

( )

( )

2

2

1

1

j i

i

i

C j i

i d D

D D
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d D
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−

−=
−

−

∑

∑ ∑
� (7)

n is the number of time series, D  is the overall mean of D, and iD  is the average distance from the shapelet 
to all time series in category i.

Table1: Test data.

Datasets Partition Instances 
(train/test)

Length Number 
(classes)

ECGFiveDays Train/Test 23/861 136 2
GunPoint Train/Test 50/150 150 2
DiatomSizeReduction Train/Test 16/306 345 4
Ham Train/Test 109/105 431 2
Herring Train/Test 64/64 512 2
DP_Little Train/Test 400/645 250 3
DP_Middle Train/Test 400/645 250 3
DP_Thumb Train/Test 400/645 250 3
MP_Little Train/Test 400/645 250 3
MP_Middle Train/Test 400/645 250 3
PP_Little Train/Test 400/645 250 3
PP_Middle Train/Test 400/645 250 3
PP_Thumb Train/Test 400/645 250 3
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4.3. PAA compression ratio selection
The PAA representation compression ratio directly affects the reduction degree and the time series 
information integrity. The time series features need to be reserved as much as possible in classification. 
Therefore, both the simplification and accuracy degree should be considered in the compression ratio 
selection. The following experiments were conducted to select the appropriate compression ratio.

Experiment 1: We selected 100 shapelets with a length of 5–30 and the compression ratio of 1–5 in PAA 
Representation. We analyzed classification accuracy based on the ROC curve and the AUC area below it.

Figure 4 shows the results of a representative experiment generated with DP_Middle dataset. Figure 4(a) 
shows the ROC curve by applying the direct classification without shapelet extraction. Figure 4(b–f) show 
the classification results after applying shapelets extraction and PAA Representation. Table 2 shows the 
detailed AUC values and the corresponding run times.

The AUC value in Figure 4(a) was about 0.62, which was only slightly higher than random guessing 
accuracy. This is because the feature segments with characteristic identification are only a small part of 
the entire time series, and in direct classification, it is difficult to identify their characteristics with other 
influencing factors such as noisy data. As a result, the time series cannot be accurately classified. The AUC 
values in Figure 4(b–f) gradually reduced from 0.89 to 0.77, and the run times reduced from 72.5 hours to 

Figure 4: The ROC curve under different compression ratio.

Table 2: Computing time and the value of AUC.

Value of v Computing time (s) The value of AUC

– – 0.6152
v = 1 261097 0.8949
v = 2 55889 0.8558
v = 3 20790 0.8418
v = 4 9970 0.8106
v = 5 5193 0.7671
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1.4 hours, which was due to the increase of dimension reduction and information loss resulting from the 
increasing compression ratio.

Therefore, shapelet extraction can significantly improve time series classification accuracy. As v increases, 
runtime decreases and classification accuracy gradually decreases. After analysis and comparison, when v = 3, 
run time and accuracy achieve a balance for favorable experimental results. So, the following experiments 
were developed with v = 3.

4.4. Shapelet classification algorithm based on efficient sequence matching
The following experiments were designed to validate the feasibility of the new algorithm based on PAA 
representation and the efficient subsequence matching method on shapelet extraction optimization and 
significant computational complexity reduction.

Experiment 2: We selected 100 shapelets with a length of 5–30 and a compression ratio of 3  in PAA 
representation. We applied conventional shapelets extraction, shapelets extraction combined with PAA 
representation, and shapelets extraction based on both PAA representation and efficient sequence matching, 
and recorded the run times. Table 3 shows the results.

From Table 3, for all of the time series datasets involved in the experiment, utilizing PAA representation 
and efficient subsequence matching in shapelet extraction significantly improved computational efficiency. 
The shapelet extraction process of the ECGFiveDays Dataset was accelerated 21.3 times, and the remaining 
datasets were accelerated by about 28–32 times. It was inevitable that the experiment would suffer from 
time inefficiencies, such as computing preparation time. The small magnitude of the ECGFiveDays dataset 
affected the results. However, the time consumption was negligible for the remaining datasets with larger 
magnitudes.

Experiment 3: We selected 100  shapelets with lengths of 5–30 and a compression ratio of 3  in PAA 
representation to complete the “train – test” standard classification. First, we applied optimal shapelet 
extraction to training datasets; then, we utilized shapelets to convert the training datasets, and used SVM, 
logistic regression, C4.5 decision trees, random forests, and other general classification algorithm to classify 
the converted datasets. Classification accuracy as shown in Table 4.

These classification algorithms showed good performance in converted dataset classification accuracy. The 
AUC values ​​were generally 0.7 or more. The optimal classification algorithm can even make the AUC values 
be 0.85 or more on datasets except Ham. The accuracy of the Ham dataset was relatively low due to high data 
similarity. As shown in Figure 5, comparing the accuracy of different classification algorithms on different 
datasets, the SVM and random forest performed better on the time series datasets with smaller magnitudes. 
With the increase of magnitude, the logistic regression algorithm surpassed other algorithms and achieved 
the highest accuracy, while the SVM classifier still showed good performance. Overall, the accuracies of 
the C4.5 decision tree and the KNN classification algorithm were relatively low, while the SVM classifier 
generated the optimal classification results.

Table 3: Comparison of computing time (s) between the improved and original algorithm.

Datasets Traditional 
shapelet

Shapelet 
extract  

with PAA

Shapelet extract with 
PAA and efficient 

subsequence matching

Upgrade multiples 
of computing 

speed

ECGFiveDays 32 3.6 1.5 21.3
GunPoint 195 16.4 6.7 29.1
DiatomSizeReduction 1334 128 46.4 28.75
Ham 6211 577 204 30.44
Herring 4873 365 151 32.27
DP_Little 37541 3057 1287 29.17
DP_Middle 38378 3106 1324 28.98
DP_Thumb 38332 3096 1318 29.08
MP_Little 38454 3122 1357 28.34
MP_Middle 37661 3084 1306 28.84
PP_Little 38339 3155 1388 27.62
PP_Middle 37854 3088 1315 28.79
PP_Thumb 38287 3135 1373 27.89
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As discussed above, combined with the PAA representation and efficient sequence matching algorithm, 
the efficiency of shapelets conversion classification algorithm can be improved, and run time can be reduced. 
The improved shapelets conversion classification algorithm had better adaptability. It kept high classification 
accuracy with various classifiers, in which SVM, logistic regression, and random forests integrating with 
efficient sequence matching have relatively better performance.

5. Conclusions
In this paper, we proposed improved shapelet conversion classification algorithm, which integrated PAA 
representation with efficient sequence matching algorithms. The improved algorithm effectively solved 
time consumption problems in the optimal shapelet extraction process, greatly improved computational 
efficiency, and efficiently and accurately classified the high-dimensional time series e. We performed 
experiments on 13 experimental datasets. The results showed that the improved shapelets classification 
algorithm had general feasibility in achieving better classification results in different time series types and 
magnitudes. Future work would examine ways to further improve subsequence-matching speed, seek better 
methods for dimension reduction instead of PAA notation, and analyze the adaptability of various classifiers 
on shapelets classifications.
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Table 4: General classifier Accuracy value using improved algorithm.

Datasets C4.5 
Decision Tree

Logistic 
Regression

SVM Random 
Forests

KNN Naïve 
Bayesian

ECGFiveDays 0.9334 0.9413 0.9614 0.9735 0.9512 0.9566
GunPoint 0.9323 0.9411 0.9812 0.9633 0.9025 0.9364
DiatomSizeReduction 0.8324 0.8847 0.9077 0.8522 0.9211 0.8913
Ham 0.7987 0.8214 0.8425 0.8333 0.8327 0.8185
Herring 0.8668 0.8843 0.9102 0.9121 0.8992 0.9058
DP_Little 0.7445 0.8753 0.8541 0.8336 0.7525 0.8425
DP_Middle 0.7300 0.8777 0.8635 0.8377 0.7356 0.8418
DP_Thumb 0.7364 0.8784 0.8621 0.8324 0.7412 0.8455
MP_Little 0.7544 0.8784 0.8758 0.8367 0.7664 0.8441
MP_Middle 0.7468 0.8823 0.8654 0.8552 0.7630 0.8663

PP_Little 0.7568 0.9002 0.8734 0.8651 0.7811 0.8667
PP_Middle 0.7633 0.8987 0.8787 0.8600 0.7798 0.8792

PP_Thumb 0.7618 0.9013 0.8842 0.8631 0.7744 0.8725

Figure 5: Accuracy comparison with different classifiers.



Wang et al: Shapelet Classification Algorithm Based 
on Efficient Subsequence Matching

Art. 6, page 11 of 12

References
Aghabozorgi, S and Wah, T Y 2014 Clustering of large time series datasets. Intelligent Data Analysis, 18(5): 

793–817.
Aljumeily, D and Hussain, A J 2015 The performance of immune-based neural network with financial time 

series prediction. Cogent Engineering, 2(1): 985005.
Bagnall, A, Davis, L, Hills, J and Lines, J 2012 Transformation Based Ensembles for Time Series Classification. 

DOI: https://doi.org/10.1137/1.9781611972825.27
Batista, G E A P A, Wang, X and Keogh, E J 2011 A Complexity-Invariant Distance Measure for Time Series. 

In: Eleventh Siam International Conference on Data Mining, 699–710. SDM 2011, April 28–30, Mesa, 
Arizona, Usa.  DOI: https://doi.org/10.1137/1.9781611972818.60

Begum, N and Keogh, E 2014 Rare time series motif discovery from unbounded streams, VLDB Endowment. 
DOI: https://doi.org/10.14778/2735471.2735476

Bettaiah, V and Ranganath, H S 2014 An effective subsequence-to-subsequence time series matching 
approach. In: Science and Information Conference, 112–122. DOI: https://doi.org/10.1109/SAI.2014.6918179

Buza, K A 2011 Fusion methods for time-series classification, Ph.D. thesis. University of Hildesheim, Germany.
Deng, H, Runger, G, Tuv, E and Vladimir, M 2013 A time series forest for classification and feature 

extraction. Information Sciences, 239(4): 142–153. DOI: https://doi.org/10.1016/j.ins.2013.02.030
Ding, H, Trajcevski, G, Scheuermann, P, Wang, X and Keogh, E 2008 Querying and mining of time series 

data. Proceedings of the Vldb Endowment, 1(2): 1542–1552. DOI: https://doi.org/10.14778/1454159
Esling, P and Agon, C 2012 Time-series data mining. Acm Computing Surveys, 45(1): 1–34. DOI: https://doi.

org/10.1145/2379776.2379788
Hartmann, B and Link, N 2010 Gesture recognition with inertial sensors and optimized DTW prototypes. 

In: IEEE International Conference on Systems Man and Cybernetics, 2102–2109.
He, Q, Dong, Z, Zhuang, F, Shang, T and Shi, Z 2012 Fast Time Series Classification Based on Infrequent 

Shapelets. In: International Conference on Machine Learning and Applications, 215–219. DOI: https://doi.
org/10.1109/ICMLA.2012.44

Hills, J, Lines, J, Baranauskas, E, Mapp, J and Bagnall, A 2014 Classification of time series by shapelet 
transformation. Data Mining & Knowledge Discovery, 28(4): 851–881.

Jeong, Y S, Jeong, M K and Omitaomu, O A 2011 Weighted dynamic time warping for time series classification. 
Pattern Recognition, 44(9): 2231–2240. DOI: https://doi.org/10.1016/j.patcog.2010.09.022

Lines, J and Bagnall, A 2012 Alternative quality measures for time series shapelets, Intelligent data 
engineering and automated learning (IDEAL), Lect Notes Comput Sci, 7435, 475–483.

Lines, J, Davis, L M, Hills, J and Bagnall, A 2012 A shapelet transform for time series classification. In: ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 289–297. DOI: https://doi.
org/10.1145/2339530.2339579

Mueen, A, Keogh, E and Young, N 2011 Logical-shapelets:an expressive primitive for time series classification. 
In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1154–1162. DOI: 
https://doi.org/10.1145/2020408.2020587

Petitjean, F, Forestier, G, Webb, G I, Nicholson, A E, Chen, Y and Keogh, E 2015 Dynamic Time Warping 
Averaging of Time Series Allows Faster and More Accurate Classification. In: IEEE International Conference 
on Data Mining, 470–479. DOI: https://doi.org/10.1109/ICDM.2014.27

Rakthanmanon, T, Campana, B, Mueen, A, Batista, G, Westover, B, Zhu, Q, Zakaria, J and Keogh, 
E 2012 Searching and mining trillions of time series subsequences under dynamic time warping. In: 
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 
262–270. DOI: https://doi.org/10.1145/2339530.2339576

Rakthanmanon, T and Keogh, E 2013 Fast shapelets: A scalable algorithm for discovering time series 
shapelets. Proceedings of the 2013 SIAM International Conference on Data Mining. DOI: https://doi.
org/10.1137/1.9781611972832.74

Shajina, T and Sivakumar, P B 2012 Human Gait Recognition and Classification Using Time Series 
Shapelets. In: International Conference on Advances in Computing and Communications, 31–34. DOI: 
https://doi.org/10.1109/ICACC.2012.8

Ye, L and Keogh, E 2009 Time series shapelets: a new primitive for data mining. In: ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 947–956. Paris, France, June 28–July. DOI: https://
doi.org/10.1145/1557019.1557122

Ye, L and Keogh, E 2011 Time series shapelets: a novel technique that allows accurate, interpretable and fast 
classification. Data Mining & Knowledge Discovery, 22(1–2): 149–182.

https://doi.org/10.1137/1.9781611972825.27
https://doi.org/10.1137/1.9781611972818.60
https://doi.org/10.14778/2735471.2735476
https://doi.org/10.1109/SAI.2014.6918179
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.14778/1454159
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1109/ICMLA.2012.44
https://doi.org/10.1109/ICMLA.2012.44
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1145/2339530.2339579
https://doi.org/10.1145/2339530.2339579
https://doi.org/10.1145/2020408.2020587
https://doi.org/10.1109/ICDM.2014.27
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1137/1.9781611972832.74
https://doi.org/10.1137/1.9781611972832.74
https://doi.org/10.1109/ICACC.2012.8
https://doi.org/10.1145/1557019.1557122
https://doi.org/10.1145/1557019.1557122


Wang et al: Shapelet Classification Algorithm Based 
on Efficient Subsequence Matching

Art. 6, page 12 of 12  

How to cite this article: Wang, H, Li, C, Sun, H, Guo, Z and Bai, Y 2018 Shapelet Classification Algorithm Based on 
Efficient Subsequence Matching. Data Science Journal, 17: 6, pp. 1–12, DOI: https://doi.org/10.5334/dsj-2018-006

Submitted: 08 October 2017      Accepted: 02 February 2018     Published: 01 March 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.
 

	     OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity 
Press.

https://doi.org/10.5334/dsj-2018-006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1. Introduction 
	2. Definitions and notation 
	3. Shapelet transformation classification algorithm based on efficient subsequence matching 
	3.1. PAA time series representation 
	3.2. Efficient subsequence matching algorithm 
	3.3. Shapelet transformation classification algorithm based on efficient subsequence matching 
	3.3.1. Standardization and dimension reduction of the original series 
	3.3.2. Shapelet candidate selection 
	3.3.3. Efficient series matching algorithms to extract the optimal shapelets 
	3.3.4. Shapelet transformation of the original series 


	4. Computational Experiments 
	4.1. Test Data 
	4.2. Quality Evaluation of Shapelets Extraction 
	4.3. PAA compression ratio selection 
	4.4. Shapelet classification algorithm based on efficient sequence matching 

	5. Conclusions 
	Funding Information 
	Competing Interests 
	References 
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table1
	Table 2
	Table 3
	Table 4

