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Accurate, up-to-date maps of and georeferenced data about human population distribution are 
essential for meeting the United Nations Sustainable Development Goals progress measures, for 
supporting real-time crisis mapping and response efforts, and for performing many demographic 
and economic analyses. In December 2014, Esri published the initial version of the World 
Population Estimate (WPE) image service to ArcGIS Online. The service represents a dasymetric 
footprint of human settlement at 250-meter resolution. It is global and contains an estimate of 
the 2013 population for each populated cell. In 2016 Esri published an additional image service 
representing the earth’s population in 2015 at 162-meter resolution. Esri’s WPE is produced by 
combining classified land cover data indicating predominantly built-up or agricultural locations 
with Landsat8 Panchromatic imagery, road intersections, and known populated places. The 
model detects where settlement is likely to exist beyond the areas classified as predominantly 
built up. The result is a global dasymetric raster surface of the footprint of settlement 
with a score of the likelihood of human settlement for each cell of the footprint. Population 
data are apportioned to this settlement likelihood surface by overlaying population counts 
in polygons representing census enumeration units or political units representing population 
surveys. This paper presents the method developed at Esri for producing the estimate of 
settlement likelihood.
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1 Introduction
Accurate, up-to-date maps of and georeferenced data about human population distribution are essential 
for meeting the United Nations Sustainable Development Goals progress measures, for supporting real-
time crisis mapping and response efforts, and for performing many demographic and economic analyses 
(e.g., Blumenstock 2016; Geldmann, Joppa & Burgess 2014; and Martin, Maris & Simberloff 2016). To aid in 
these efforts, Esri published the initial version of the World Population Estimate (WPE) image service to its 
ArcGIS Online portal in December 2014. The WPE is a global dasymetric estimate of the footprint of human 
 settlement, where each populated raster cell in the footprint contains an estimate of the number of people 
living there. In the summer of 2016, Esri published an additional image service for the world’s population 
in 2015 based on an improved methodology for estimating the footprint. The improved methodology is 
presented here. With the 2015 estimate, Esri also released image services of population density, settlement 
likelihood scores, and confidence scores for settlement likelihood. Figure 1 shows the global extent of the 
footprint as a map of population density.

Esri’s image services are a type of web service, making one or more raster datasets available to ArcGIS soft-
ware users via the ArcGIS Online portal. The services can be accessed by many users simultaneously. These 
services provide access to the data such that they do not need to be copied and can be used directly as input 
to ArcGIS geoprocessing tools and models or ArcGIS web application program interfaces (APIs). Use of these 
services is free for all registered ArcGIS software users. 
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The 2013 estimate is provided at a raster resolution (cell size) of 250-meters globally, and the 2015 
 estimate is provided at 162-meter resolution. One of the improvements to the 2015 estimate was moving 
the  production from the Web Mercator Auxiliary Sphere coordinate system to the World Geodetic System 
WGS 1984 geographic coordinate system. This also means the raster resolution is expressed as the width 
of a cell at the equator. Figure 2 shows an area in central Spain, with Madrid at the center, to illustrate the 
geographic precision or level of detail 162-meter resolution raster data provides.

Figure 1: Global coverage of the WPE as a map of population density where raster cells on land represent a 
dasymetric surface. The populated cells are represented with an estimated density in units of persons per 
square kilometer.

Figure 2: Madrid, Spain, and the surrounding territory representing the 162-meter raster resolution of the 
2015 WPE.
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Esri produced the WPE as a response to user’s needs to perform economic and demographic analyses with 
a high level of geographic precision. The WPE is used by the Data Enrichment tool in Esri ArcGIS Online 
software and by Esri Business Analyst software. Other potential uses for the WPE include estimating popula-
tions affected by natural disasters, disease outbreak, and other humanitarian emergencies and estimating 
the impact of human activity on the landscape. 

The additional services released in 2015, particularly the likelihood of settlement image service, expand 
the utility of the WPE by allowing Esri’s users who possess census data or population estimates of higher 
quality than those used by Esri to produce higher-quality estimates of where people live. Some countries do 
not publicly release their most detailed census enumeration unit boundaries, but now ArcGIS users within 
those governments can produce higher-precision estimates of where their population may live by using the 
settlement likelihood service.

The WPE is a dasymetric portrayal, as opposed to an areal weighting or pycnophylactic interpolation, as 
described in Hay et al., (2005) that implements three smart interpolation methods for producing gridded 
population estimates. Linard and Tatem (2012) adjust this relationship by labeling smart interpolation as a 
fourth, more sophisticated approach involving imagery and multiple ancillary datasets. Thus, the WPE could 
be categorized as a dasymetric map using a smart interpolation method, though, as will be presented in the 
methodology section, the WPE is dasymetric first with smart interpolation applied afterward. Voinov (2014) 
presents arguments for the superiority of using a dasymetric technique to model the footprint of human 
settlement because assumptions about the distribution of population are made in the other methods.

The method for producing the WPE is different from other settlement pattern estimates in two ways. First, 
the unique combination of processing steps and the order of operations differ from other dasymetric set-
tlement footprint estimates (Dobson et al., 2000; Pesaresi et al., 2012; Esch et al., 2013; European Statistical 
System, 2012; Linard and Tatem, 2012). Second, the model produces an estimate of the settlement footprint 
for nonurban areas using a technique to analyze panchromatic Landsat8 scenes to derive a measurement 
of likelihood of textural features (Haralick, Shanmugam, and Dinstein, 1973). Cheriyadat, et al., (2007) and 
Pesaresi, et al., (2012) implemented a textural features algorithm using a gray level co-occurrence matrix 
(GLCM), which is succinctly described in Albregtsen (2008) and Pradhan et al., (2013).

2 Methodology
Esri’s model for producing the WPE begins with using a global 30-meter resolution classified land cover 
raster dataset called BaseVue 2013. The purpose is to establish known urban areas, areas likely to include 
settlement, and areas not likely to contain settlement. BaseVue is produced by MDA Information Systems 
LLC, a subsidiary of MacDonald Dettwiler and Associates Ltd (MDA, 2014). MDA derived BaseVue 2013 from 
Landsat8 scenes by using a classification and regression tree (CART) algorithm similar to Smith, Bolton, and 
Jengo (2004). BaseVue integrates the U.S. Geological Survey’s 2011 National Land Cover Dataset (NLCD) 
(Homer et al., 2015) within the conterminous United States. 

The BaseVue 2013 land cover dataset contains sixteen Anderson-style land cover classes (Anderson, et al., 
1976). Esri’s model begins by using the Reclassify tool from the ArcGIS Spatial Analyst software to assign an ini-
tial score to each BaseVue land cover class to represent the likelihood of people to live within a BaseVue cell with 
that respective class assignment. This includes a score of zero for cells with classes where people are not likely 
to live. Table 1 lists BaseVue’s classes and criteria (MDA, 2014) and Table 2 lists scores assigned by Esri’s model. 

There are two challenges with this reclassified BaseVue data. First, there are missing populated places, 
particularly smaller places such as rural villages and farms that did not have sufficient levels of constructed 
materials per MDA’s definitions for classes 20 and 21. Second, in the area with scores of 25, there is a great 
deal of unpopulated land. However, those areas also include populations living at the edges of cities or in 
rural areas, on farms, or in isolated residences. 

To address the first issue of missing populated places, Esri used the GeoNames.org gazetteer database 
(GeoNames.org, 2013). Esri used a subset of GeoNames where the Category field contained a value of ‘PPL’, 
which GeoNames.org defines as ‘a city, town, village, or other agglomeration of buildings where people live 
and work’. The following steps were taken using ArcGIS 10.3.1 software to process the GeoNames.org data 
and add their locations to the reclassified BaseVue dataset:

1. Buffer the GeoNames.org points by 100 meters to create a 200-meter diameter polygon for each point. 
2. Add an integer score field to this buffers dataset and calculate all rows to a value of 150.
3. Convert the buffered polygons to a 30-meter resolution global raster dataset using the score attribute, 

which creates a raster with cell values of 150 or NoData.

http://GeoNames.org
http://GeoNames.org
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4. Use the Reclassify tool to set the NoData cells to 0 (zero). The Reclassify tool produces a new raster 
dataset where some or all of the values have been changed based on the user specifying input values 
that should be changed to new values. 

5. Use the Local Statistics tool with the Maximum option, given the inputs of Step 4 and the reclassified 
BaseVue dataset. The Local Statistics tool performs statistical operations at the location of each cell for a 
series of overlapping raster datasets. Thus, the mean, minimum, or maximum value occurring at a given 
location may be derived. The result is a raster dataset representing all potentially populated areas. 

The second problem of areas being included, particularly within agricultural areas where no people live, has 
a two-part solution. In the result of Step 5 above, any cell with a likelihood score of 25 needs to be evaluated 
to determine whether people are likely to be living there. Esri used two processes to accomplish this. The 

Table 1: Land cover classes in BaseVue 2013. In particular, note the urban classes have a high requirement 
for infrastructure, which inherently excludes cells at the edges of urbanization or rural settlements such 
as farming villages.

Class Class Name Description

1 Deciduous Forest Trees > 3 meters in height, canopy closure > 35% (<25% intermixture with evergreen 
species) that seasonally lose their leaves, except larch

2 Evergreen Forest Trees > 3 meters in height, canopy closure > 35% (<25% intermixture with deciduous 
species), of species that do not lose leaves (will include coniferous larch regardless of 
deciduous nature)

3 Scrub/Shrub Woody vegetation < 3 meters in height, > 10% ground cover. Only collect > 30% 
ground cover.

4 Grassland Herbaceous grasses, > 10% cover, including pastureland. Only collect > 30% cover.

5 Barren or Minimal 
Vegetation

Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, 
strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included 
when not inundated with water.

7 Agriculture, General Cultivated cropland

8 Agriculture, Paddy Cropland characterized by inundation for a substantial portion of the growing season

9 Wetland Areas where the water table is at or near the surface for a substantial portion of the 
growing season, including herbaceous and woody species (except mangrove species)

10 Mangrove Coastal (tropical wetlands) dominated by mangrove species

11 Water All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, 
rivers, and streams

12 Ice/Snow Land areas covered permanently or nearly permanently with ice or snow

13 Clouds Areas where no land cover interpretation is possible due to obstruction from clouds, 
cloud shadows, smoke, haze, or satellite malfunction

14 Woody Wetlands Areas where forest or shrubland vegetation accounts for greater than 20% of 
 vegetative cover and the soil or substrate periodically is saturated with or covered by 
water. Only used within the continental U.S.

15 Mixed Forest Areas dominated by trees generally greater than 5 meters tall and greater than 20% of 
total vegetation cover. Neither deciduous nor evergreen species are greater than 75% 
of total tree cover. Only used within the continental U.S.

20 High Density Urban Areas with over 70% of constructed materials that are a minimum of 60 meters 
wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of 
 constructed materials and vegetation, where constructed materials account for > 60%. 
Commercial, industrial, and transportation, e.g., train stations, airports.

21 Medium-Low Density 
Urban

Areas with 30% to 70% of constructed materials that are a minimum of 60 meters 
wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture 
of constructed materials and vegetation, where constructed materials account for 
greater than 40%. Commercial, industrial, and transportation, e.g., train stations, 
 airports.
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first was to use proximity to road intersections. Tang (2003) argues that road pattern is closely related to 
urban growth. Thus, Esri created a global dataset of road intersections from two sources: HERE.com (HERE.
com, 2015) and OpenStreetMap (OSMF, 2015). A country-by-country analysis was conducted to determine 
which countries had more data from either source and therefore which source would be used. The vector 
line street data were assembled into datasets for six continental zones. To produce intersection points, Esri 
used the following processing steps:

1. Create a geometric network for each zone’s dataset. A by-product of creating a geometric network 
is a junction point feature class, representing all road intersection points. A geometric network is a 
 geodatabase class that represents the connectivity of features from the input polyline feature classes.

2. Use the Append tool to put the six junction feature classes into one global point dataset. The Append 
tool concatenates features from one or more feature classes into a single output feature class that will 
contain all features.

3. Convert the junction dataset to a 30-meter resolution global raster dataset. 
4. Use the Block Statistics tool with the Minimum option and a 5 × 5 cell neighborhood. Each cell is given 

a score of 150 if it is within the 5 × 5 cell of a cell corresponding to a junction point. The Block Statistics 
tool summarizes the values of the input raster into a coarser resolution output raster, allowing the user 
to derive means, minimums or maximums for a regular gridded set of “blocks” that conform to the 
origin of the input raster dataset.

5. Use the Con tool where the output of Step 5 above has a value of 25, and set it 150 if it corresponds 
with a cell value of 150 from the results of Step 4. The Con tool is used to apply conditional logic to 
the intersection of two raster datasets, and in particular allows complex algebraic statements as the 
expression of the logical relationship between cell values of the raster datasets at each cell’s location.

To this point, the results contain scores of 150 or higher for areas that have a high certainty for repre-
senting places where people live. The cells with a score of 25 still represent mostly unpopulated loca-
tions but include farms and isolated residences. To screen out the areas where people are not living, 
Esri modeled panchromatic imagery from Landsat8 against the cells with a value of 25. The use of 

Table 2: On the left are the BaseVue 2013 class identifiers and names, and on the right the initial remapping 
of BaseVue classes into settlement likelihood scores.

Class ID Class Name Modeled Population Likelihood 
Score and Rationale

1 Deciduous Forest 25—Potentially Orchard Agriculture

2 Evergreen Forest 0

3 Scrub/Shrub 0

4 Grassland 25—Potentially Range/Pasture 
 Agricultural Land

5 Barren or Minimal Vegetation 0

7 Agriculture, General 25

8 Agriculture, Paddy 25

9 Wetland 0

10 Mangrove 0

11 Water 0

12 Ice/Snow 0

13 Clouds 0

14 Woody Wetlands 0

15 Mixed Forest 0

20 High Density Urban 200

21 Medium-Low Density Urban 150

http://HERE.com
http://HERE.com
http://HERE.com
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imagery for this purpose is common to all other country- or global-scale dasymetric settlement estimates 
 (Cheriyadat et al., 2007; Pesaresi et al., 2012; Esch et al., 2013; European Statistical System, 2012; Linard 
and Tatem, 2012).

Esri’s method of evaluating Landsat8 (Esri, 2014a) imagery assesses whether a 5 × 5 cell moving 
 neighborhood window is likely to contain textural features (Haralick, Shanmugam & Dinstein, 1973; 
Albregtsen, 2008) as opposed to explicitly modeling the features as discussed by Cheriyadat et al., (2007) 
and Pesaresi, et al., (2012). Esri used the following processing steps in ArcGIS to produce a likelihood score 
for textural features to use as a likelihood of settlement score:

1. Create a 0.5 × 0.5-degree polygon grid in the WGS 1984 coordinate system. This grid is used as 
 processing extents for the remainder of the model. The Fishnet tool was used to create this grid.

2. Extract the 15-meter resolution Landsat8 panchromatic imagery within the current processing grid 
extent. Note: A top of atmosphere (TOA) radiance correction was not available in the version of Esri’s 
image service for Landsat8 panchromatic imagery. The Extract by Mask tool was used to perform this 
operation.

3. Create a cloud mask using values higher than 15,000. The values of the Landsat8 panchromatic  imagery 
range from 5,000 (dark, or low reflectance) to 65,535 (white, or high reflectance). The Reclassify tool 
was used to assign cloud values to a value of 1 and non-cloud values to NoData.

4. Expand the cloud mask by 20 cells using the Expand tool. This was intended to remove incidental 
clouds or undetected clouds and cloud shadows that often occurred in cells adjacent to cloud 
cells. 

5. Use the mask from Step 4 to assign NoData values to the result of Step 2. This removed the high-value 
cloud cells from the next steps of the analysis. The issue with including clouds is they create false posi-
tives for texture at their edges.

6. Use the Focal Statistics tool, with the results of Step 5 as input, to determine the range of cell values in 
a 5 × 5 cell rectangular neighborhood of each cell. 

7. Use the Focal Statistics tool, with the results of Step 6 as input, to determine the sum of ranges of cells 
in a 5 × 5 cell rectangular neighborhood of each cell.  This step eliminates the influence of single-cell 
spikes.

8. Determine the mean and standard deviation of values in the dataset (represents the processing grid’s 
extent) resulting from Step 7. Add these to create a settlement texture threshold score.

9. Use the Raster Calculator tool with the Con function, with inputs of the result of Step 7, and the dasy-
metric surface such that the Con function selects values from the result of Step 7 above the settlement 
texture threshold score from Step 8, normalizes the range of those values from 1 to 100, and adds them 
to any non-zero score in the dasymetric surface. Cells with values below the threshold for settlement 
texture score in the dasymetric surface are set to 0 (zero). 

10.  Resample the result to 150-meter resolution using the nearest neighbor method. This resolution is 10 
times the LandSat8 raster dataset and 5 times the land cover scores raster dataset.

Thus, the result of the above steps is a dasymetric surface representing settlement likelihood with values 
ranging from 0 to 300. Figure 3 illustrates how these steps work on one example neighborhood. 

Any likelihood score above 150 represents at least low-medium residential population density. Any 
score above 200 represents high population density. Scores from 1 to 125 represent the potential for rural 
 population density. Cells with a score of 0 represent no population living in that location. Statistically, the 
 likelihood of settlement score can be represented as follows:

( )  

25

5 5
   c Max Min n
i c

T C C
×∑ =

=

= −

Where T represents the likelihood of texture score within a 5 × 5 cell neighborhood of each cell (C) in the 
Landsat8 panchromatic imagery. 

  { }Settlement s s cT Min T T Tμ σ= + >

T-Settlement level is the likelihood of texture score for a cell most likely to indicate human settlement. The 
mean (µ) and standard deviation (σ) are for the 0.5-degree processing tile. 
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Figure 3 also illustrates the process described in Steps 2–9 above, which produce the final dasymetric 
footprint of settlement scores representing a likelihood of settlement in those locations. To this point, the 
cells in the dasymetric settlement footprint represent the following conditions and value ranges:

•	 High	Density	Urban	from	BaseVue:	200	+	1	–	100	texture	likelihood	score
•	 Medium-Low	Density	Urban	from	BaseVue:	150	+	1	–	100	texture	likelihood	score
•	 Road	Intersection	or	Place	point	buffers:	150	+	1	–	200	texture	likelihood	score
•	 Agricultural	Lands	from	BaseVue:	25	+	1	–	100	texture	likelihood	score

The last part of Esri’s model to create the WPE apportions population estimate data, stored in polygons rep-
resenting either census enumeration units or areas where population has been estimated or surveyed. The 
sources for these data are as follows, in order of preference:

•	 Esri	Demographics	for	United	States	and	U.S.	Protectorates	and	Territories:	Polygon	geographies	are	U.S.	
Census Block Group with Esri’s current year estimate (Esri 2015b) with 218,125 polygon features.

•	 Canada:	Environics	Analytics	at	the	Dissemination	Area	(DA)	level	with	56,204	polygons.
•	 Michael	Bauer	Research	GmbH:	134	countries	at	admin	level	3	(county)	or	4	(city/town)	for	current	year	

estimate, with 1,009,501 polygons.
•	 Seventy-eight	countries	with	the	most	recent	estimates	from	the	United	Nations	Population	Division,	

usually at admin level 3, though some are 2 (state) with 9,925 polygons.
•	 Eighteen	countries	with	estimates	more	recent	than	the	United	Nations	Population	Division,	totaling	

316,368 polygons, though 315,826 are from Brazil.

The populations from these polygons are apportioned in a two-stage process to create a new raster dataset 
given the dasymetric settlement footprint with the likelihood scores as input. First, if there are more cells 
with nonzero settlement scores in a given polygon than the number of people, dasymetric settlement likeli-
hood surface for that polygon is reprocessed as follows:

1. Reclassify the scores such that all scores of 123 and lower are set to 0 (zero).
2. Set new scores for the remaining cells by first subtracting 124 and then multiplying by 1.73.

Generally, the above two steps are required for sparsely populated polygons representing large geographic 
areas. To complete the apportionment, the populations of the polygons are distributed to the cells based on 
each cell’s settlement likelihood score. This is done by determining the ratio of the polygon’s population to 
the sum of settlement scores inside the polygon.

The resulting population surface is verified as having the correct total population for all countries and then 
for each country when the raster cells whose centers fall within a given country’s boundary are extracted 

Figure 3: Main processing steps, starting with the Landsat8 panchromatic imagery; then range of values in 
a 5 × 5 cell neighborhood; then the sum of ranges; and finally, the cells with sums above the threshold for 
settlement texture score and their value once normalized.
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and summed. A population density surface is also computed, and locations with population densities over 
50,000 persons per square kilometer are manually evaluated. Such areas occur due to horizontal inaccura-
cies within the population polygons, where they may have only cover or extend into locales where the dasy-
metric settlement likelihood surface contains too few cells. To address this, the topology of the population 
polygons is edited to match high-resolution satellite imagery (Esri 2015c), and the steps to apportion the 
population data are repeated.

3 Results and Discussion
To summarize, the method for determining the dasymetric settlement surface starts with known urban 
areas, adds highly likely locations near road intersections and GeoNames populated places, and then models 
the edges of settlement and fills in rural settlement using texture from panchromatic imagery. There are 
several aspects of this process worthy of further discussion:

•	 BaseVue	urban	area	classifications
•	 Modeling	the	likelihood	of	textural	features
•	 Areas	of	potential	improvement

BaseVue urban classifications: The Medium-Low Density Urban and High Density Urban classifications 
require 40% and 60%, respectively, of land area to be commercial, industrial, or transportation, implying 
large areas of concrete exist. Thus, villages or concentrations of people where there are no paved roads or 
modern infrastructure are classified using the land cover type of the surrounding area. This also indicates 
a conservative estimate of the size of urbanized areas. The outskirts of cities and suburban areas may not 
contain a sufficient level of visible pavement or structures to be considered in either of the urban classes. 
It is important that these urban classes in BaseVue not overestimate the geographic extent of the urban 
footprint (Linard et al., 2012). Therefore, the urban classes were isolated and visually inspected relative to 
high-resolution satellite imagery in several dozen cities, occurring on all continents, to verify this to be true. 
Thus, these two classes of BaseVue were deemed an appropriate starting point. 

Modeling the likelihood of textural features: Cheriyadat, et al. (2007) discuss an approach to using 
grayscale imagery as a basis for detecting dasymetric settlement footprints. Their approach focuses on find-
ing local edge patterns (LEP) using a GLCM. Among the challenges they discuss is the lack of guidance for 
the size of the neighborhood to analyze around each pixel. Cheriyadat, et al. (2007) reported using a 17 × 17 
neighborhood within a given image, and 31 × 31 at the edges.

As described above, a 5 × 5 neighborhood was used to analyze 15-meter resolution Landsat8 panchro-
matic imagery. This approximately matches Pesaresi, et al., (2012), where 5 × 5 cell neighborhoods were 
applied to 10-meter resolution imagery, though the basis for that determination was to use a 50-meter 
window size regardless of resolution. This neighborhood size was useful because it covers roughly half a city 
block and would encompass at least part of a large building and either its shadow or the shadow from an 
adjacent building. This combination of shadows and high reflectance off building materials is conceptually 
the same as LEP described above, except instead of defining explicit cell value and distance pairings, a high 
value range of cell values must occur within the 5 × 5 cell neighborhood. 

Using only the range for a 5 × 5 cell neighborhood will provide some insight into the likelihood of textural 
features. However, it does not eliminate the possibility of one-cell spikes, particularly off highly reflective 
building materials or bodies of water. For example, such a spike would be a value of 48,000 in the midst of 
cell values ranging 7–11,000. The high range of values in the neighborhood of this cell would be skewed. 
However, using the sum of ranges sufficiently dampens the impact and reduces the likelihood for that loca-
tion to be above the mean plus the standard deviation of the processing tile’s sum of range values. This 
implies that two or more edges or textural features are within the 5 × 5 neighborhood of cells with a sum 
of value ranges higher than the mean plus the standard deviation for the processing tile. For comparison, 
Pesaresi, et al., (2012) used a minimum of four GLCM cell pairs occurring within a 5 × 5 neighborhood to 
constitute texture, thus showing that the count of cell pairs in a GLCM could also be used as a threshold.

Haralick, Shanmugam, and Dinstein (1973) presented textural features with the intent of locating and 
ultimately extracting features from a single image and presumed the values of grayness in the cells could 
be represented using pre-specified pairs of values, rather than ranges between any pair of cells. This makes 
sense if a feature can be fully defined using pairs of cells. The values of cells in the same location but having 
a different image date, or for the same type of structure (e.g., a McDonald’s restaurant) but in a different 
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image location, will vary even if all imagery is from the same sensor. Thus, a method that is more tolerant of 
varying conditions is needed.

This idea of finding a relatively high range of cell values within a local neighborhood is not new. Here it 
has been adapted from terrain ruggedness or rugosity models found in the landscape ecology literature. 
Rugosity is a measurement of the roughness of terrain (normally quantified by a ratio of surface area to 
planar area) and is useful for describing the geomorphic conditions that potentially define major character-
istics for plant and animal habitat (Beier, Majka, and Spencer, 2008; Jenness, 2004). Models for ruggedness 
analyze elevation datasets and often a slope derivative to classify how much change exists within a locale 
(Cooley, 2016). This can be applied to grayscale imagery, whereby high amounts of local changes in value 
may indicate landscape disturbance, settlement, or false positives such as sun glints on water bodies or the 
edges of natural or agriculturally vegetated areas. In producing the WPE, many of these false positives were 
inconsequential because they did not occur within urban or agricultural areas, and others were eliminated 
later when the lower textural values in sparsely populated areas were removed.

Areas to improve: This method could be improved in several areas:

•	 Horizontal accuracy of the census polygon data: Accuracy of boundary data are improving; however, 
more improvements are needed. Balk, Yentman, and de Sherbinin (2010) note this issue, and Bhaduri, 
et al., (2007) discuss the impact of spatially inaccurate data on data integration workflows. Just over 
4.8% of the populated cells in the WPE were at a population density of over 25,000 persons per square 
 kilometer. This percentage seems extremely high. Horizontal inaccuracy of vector data can result in forc-
ing large populations into a small number of cells. 

•	 Need better census data for many countries: The population estimates for twenty-two countries were 
ten or more years old. 

•	 Land use data: The U.S. Census data boundaries for block groups contain many polygons with no popu-
lation. These correspond to industrial plants, factories, airports, and other facilities where no people 
reside. Similar data are needed for most other countries.

•	 Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984): MAUP varies by scale in this work due to the 
arbitrary choice of raster resolution. For convenience, the 30-meter resolution MDA BaseVue 2013 land 
cover data, which are derived from Landsat8, are used as a snap raster dataset for much of the process-
ing. However, if the processing were to be done at 90-meter or 150-meter resolution, some variation in 
the footprint pattern could result.

•	 Use of 0.5-degree processing tiles: The 0.5-degree processing tiles provide the basis for the mean and 
standard deviation of the sum of ranges for the Landsat8 panchromatic data. This is arbitrary and, ulti-
mately, an unnecessary artifact of an ArcGIS geoprocessing workflow. Future workflows are planned that 
will eliminate this aspect of the workflow. However, a tiled workflow does provide a very conservative 
basis for the regional mean and standard deviation of the sum of ranges. Newer technology exists in 
the form of mosaic datasets, which can process the entire globe at 15- or 30-meter resolution in a single 
step. Therefore, another basis will be needed to derive the regional mean and standard deviation. Jones 
and O’Neill (2013) used a 100-kilometer neighborhood for this purpose. 

•	 Artifacts from the processing grid and Landsat8 scene edges: Because the Landsat8 scenes do not have 
equivalent distributions or identical ranges of cell values, the 0.5-degree processing grid used to pro-
duce the dasymetric footprint of settlement intersects the Landsat8 scenes in a spatially independent 
way. Statistics for processing tiles containing only a small percentage of cells on land and a smaller per-
centage representing settlement may be skewed. Figure 4 illustrates an extreme case of the impact of 
these limitations. There are also areas in the final output showing artifacts along the edges of Landsat8 
scenes. This is due to two factors: adjacent scenes that are relatively cloud free may be more than two 
months apart, and at the time of processing, the information necessary to include a TOA correction 
for radiance was not yet available. The latter would help normalize the differences in distribution and 
cell value range between adjacent scenes. The former could be addressed by targeting leaf-off imagery 
whenever possible.

One aspect of this method is not starting with or using any previously produced gridded population estimate, 
gridded settlement footprint estimate, or lights at night estimate. This affords the benefit of not including 
any of the potential errors or uncertainty of those works. However, each of these previous efforts also have 
strengths, and therefore this method derives no benefit from the existing gridded population  datasets. It 
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should also be noted that, as made apparent in the above section of areas to improve, many of the ancillary 
input datasets vary in spatial quality, and therefore, any efforts to model a dasymetric  settlement surface 
using these datasets suffers from the uncertainty of where the quality varies.

4 Conclusion
The authors propose that the methodology described herein for determining a dasymetric settlement 
 likelihood surface, starting with a conservative estimate of urban land cover and then adding to the footprint 
based on known locations of settlement, locations near road intersections, and the likelihood of two or more 
textural features within a 5 × 5 cell neighborhood of Landsat8 panchromatic imagery, is not only a viable 
alternative to the previously published smart interpolation methods for producing a dasymetric  settlement 
footprint but may also be considerably faster. In particular, using a GLCM to confirm the presence of edges 
of textural features appears to require a great deal of computational resources. These resources are needed 
to test for specific conditions within potentially large spatial neighborhoods as opposed to the minimalist 
5 × 5 cell neighborhood undertaken in this method. 
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