Real Estate Evaluation Model Based on Genetic Algorithm Optimized Neural Network
DOI:
https://doi.org/10.5334/dsj-2019-036Keywords:
genetic algorithm, neural network, real estate, evaluation modelAbstract
With the rapid development of society, the real estate economy, as an important part of Chinese economy, is showing a growing trend. But it is also the most likely to generate bubble economy, causing financial risks; it will trigger a series of social contradictions and cause social unrest in severe cases. Therefore, it is urgent to improve and optimize the real estate evaluation model. In this study, the real estate was evaluated based on the neural network model optimized by genetic algorithm. Through sorting out and summarizing the real estate data in a period of time, the corresponding model was established and the test data were obtained. The average relative error value of the genetic algorithm optimized neural network model was 3.552, which was smaller than that of the Back-Propagation (BP) neural network prediction model. The experimental conclusion that the new network model was better than the traditional model was obtained. This work opens up a new route of real estate evaluation.
Published
Issue
Section
License
Copyright (c) 2019 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms. If a submission is rejected or withdrawn prior to publication, all rights return to the author(s):
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Submitting to the journal implicitly confirms that all named authors and rights holders have agreed to the above terms of publication. It is the submitting author's responsibility to ensure all authors and relevant institutional bodies have given their agreement at the point of submission.
Note: some institutions require authors to seek written approval in relation to the terms of publication. Should this be required, authors can request a separate licence agreement document from the editorial team (e.g. authors who are Crown employees).