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ABSTRACT
The purpose of this study is to explore the information retrieval process in scientific 
data and to better understand the concepts and internal relationships of metadata and 
relevance criteria. Qualitative and quantitative analyses were performed using interview 
and eye movement data from 36 subjects. The results show that users paid attention to 
45 types of metadata and used nine relevance criteria to judge the relevance of scientific 
data. There was a complex relationship between the metadata and criteria, mainly 
manifesting as one stimulus–multiple responses and multiple stimuli–one response. 
Metadata associated with the relevance criterion of topicality is the most complex, which 
includes common metadata and subject-related metadata. Metadata associated with 
the other relevance criteria (such as quality and authority) has no obvious professional 
characteristics. What’s more, because of the essential difference between scientific 
data and documents, users use different criteria. When retrieving data, users pay more 
attention to the availability of data and whether they can be further analyzed and 
processed. This study clarifies the concepts of metadata and relevance criteria as well 
as their roles in relevance judgments. In addition, this study deepens the understanding 
of the scientific data relevance judgments and their cognitive process and provides a 
theoretical basis for improving scientific data-sharing platforms.
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1. INTRODUCTION
Scientific data are series of original data, processing data, and result data produced by scientists 
in the process of scientific research. Metadata are data about data that describes the properties 
of the data. The amount and usage of data are booming. Data in science, medicine, business, 
and other fields are predicted to soon reach critical mass (Christine, 2014). Mass scientific 
data resources are the basis of scientific research. Scientific data sharing is the key to realizing 
information value and data reuse, and it is an important way to promote the flow of scientific 
data among researchers so that these data may be transformed into scientific conclusions 
(Deng Zhonghua, 2017). To better share and reuse scientific research results, which avoids 
wasting research funds, scientific communities in all fields are building scientific data sharing 
platforms, which provide mass data resources for researchers. Before reusing data, users must 
assess the data’s relevance. They seek assurance that the data can be understood, and they 
must trust the data (IM Faniel, 2010). In contrast to other information carriers (like literature, 
images and videos), scientific data are highly purpose, targeted, subject-related, and technical. 
In addition, specialist software tools are usually required to analyze the results of scientific data. 
From document retrieval to data retrieval, information types have substantially changed, and 
an urgent question is whether the user retrieval modes and strategies have change accordingly. 

Relevance is the relationship between the task at hand and the information presented to us. It 
is a core concept in the field of information science. A relevance judgment determines whether 
such a relationship exists or not, and relevance criteria are factors that affect judgment. In 
the age of data, people needed to quickly find information related to their own needs from a 
large amount of information, so relevance studies have become increasingly important. Many 
previous studies have focused on relevance in various contexts in order to provide a theoretical 
basis for various information retrieve systems. The results show that relevance judgment differs 
when the research situation changes (Taylor, 2009).

There is a continuous and indivisible cognitive process that extends from gazing at information 
to stimulating the brain to use criteria to make a judgment and includes stimulus, attention, 
and memory extraction (Gao and Xiaoyun, 2003). When a study focuses on scientific data, a 
user’s retrieval behavior may change. How users search for relevant scientific data still needs 
further study. To better understand relevance judgment, this study explores the relationship 
between metadata and relevance criteria. Its aim is also to determine the following:

(a)	what types of metadata users pay attention to when retrieving scientific data;

(b)	what criteria are used in scientific data relevance judgment and how they differ from 
document criteria;

(c)	 the relationship between metadata and relevance criteria and the rules this relationship 
follows.

By answering these three questions, we hope to make the following contributions. First, 
the concepts of metadata and relevance criteria will be defined clearly, enriching relevance 
research. Second, the IR community will gain a deeper understanding of how users make their 
relevance judgment decisions within a data context. Finally, the findings of this study will have 
implications on the design of data retrieval systems. A comparison of the relevance criteria used 
for different media and situations will guide designers of different IR systems. Because data 
users have different needs and motivations, investigating relevance criteria within different 
data contexts will help the design of systems that meet their needs. 

2. LITERATURE REVIEW
2.1 RELEVANCE JUDGMENT

Relevance judgment was critical in relevance researches. Lots of relevance researches were based 
on relevance judgment process (Ingwersen, 2011). From those studies, we could see relevance 
judgments were considered highly complex and cognitive (Xie and Benoit, 2013). Relevance 
judgment results were dynamic and contextual rather than constant (Anderson, 2005; Saracevic, 
2016). The factors affecting judgment were mainly divided into internal and external factors. 
Internal factors mainly included individual cognitive differences. External factors mainly included 
information types, task, and pressure. Relevance judgment was a continuous process, which was 
closely related to the user’s cognitive processing. In order to analyze relevance judgment more 
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accurately, scholars added lens model and making-decision theory into study (Wang Peiling, 
1998; Soo Young Rieh, 2002). They thought users used limited environment information to 
make rational judgment, and those information could be linearly weighted. In addition, scholars 
used SEM (Structural Equation Model) to quantitatively analyze the factors’ weight on relevance 
judgment (Xu Calvin, 2006; Xiaolun Wang, 2014; Jianping Liu, 2019).

Wang Peiling (1998) proposed document selection model based on lens model, presenting a 
relatively clear relevance judgment process. Balatsoukas (2012) recorded user’s AOI(Area of 
Interest) using eye movement devices and got web relevance criteria through deep-interview, 
making relevance judgment more intuitive and visual. The studies demonstrated that these 
judgments were not singular actions but were instead embedded in very diverse and complex 
search and research practices (Anderson, 2005). 

2.2 METADATA

Metadata was data about data. Metadata contained a lot of information. In the paper, metadata 
was limited to data structures, including datasets names, relationships, field, etc. Scholars 
preferred to call it metadata, including title, authors, time, abstract, key words, etc. Marchionini 
(2009) thought metadata should facilitate sense making during the relevance judgment process 
and not act merely as information access points. Metadata’s content and layout would affect 
users’ judgment and satisfaction (Drori, 2003). So scholars designed a lot of experiments to study 
the influence of metadata on relevance judgement, including dynamic abstract (Paek et al., 2004), 
data thumbnail (Dziadosz and Chandrasekar, 2002), and metadata classification (Rele et al., 2005).

Panos Balatsoukas (2010) thought participants preferred metadata that were easy to 
understand and grouped into categories. In order to better understand users’ concerns about 
metadata, Balatsoukas used eye-tracking device to measure metadata quantitatively. The 
results showed different cognitive efforts will lead to different relevance judgments. The main 
metadata they focused on included title, abstract, URL, etc.

Curtis Watson (2013) studied how middle school students judge the reliability and relevance 
of web information. The study found participants more liked topical metadata and reliable 
metadata. Users’ cognitive level and perceived authority, webpage graphic design, writing 
style, and authors all could affect users’ relevance judgment.

2.3 RELEVANCE CRITERIA

Schamber (1996) defined relevance criteria ：the factors that influenced the user’s data 
relevance judgments. In the 1990s, many empirical studies had been carried out to identify 
document relevance criteria or factors in different problem domains. For example, Barry (1994) ）
interviewed 18 academic users who had requested an information search for documents related 
to their work to categorize their relevance criteria. And finally she identified 23 categories in 7 
groups. Magluaghlin and Sonnenwald (2002) asked 12 graduate students with real information 
needs to judge the relevance of the 20 most recent documents and identified 29 criteria in 6 
categories. Other researchers who had done similar research were Park (1993), Cool (1993), 
Westbrook (2001) and so on.

In the 21st century, the information carriers were diversified, and the empirical research on the 
relevance criteria also developed from literature to image (Markkula & Sormunen, 2000; Sedghi, 
2008, 2012; Hamid, 2010, 2016; Tsai-Youn Hung, 2018), WWW (Tombros, 2003, 2005; Crystal 
& Greenberg, 2006; Savolainen, 2006; Yang-woo Kim, 2014; Yung-Sheng Chang, 2018), music 
(Laplante, 2010; Inskip, 2010), video (Yang, 2010; Albassam, 2017), mobile commerce (Xiaolun 
Wang, 2013) etc.

In conclusion, it could be found that the relevance criteria research was consistent with the 
development of current mainstream information carriers. There were common criteria across 
different contexts and information carriers (Barry & Schamber, 1998; Xu, 2006; Saracevic, 2015). 
At the same time, different information carriers have unique relevance criteria (Zhang, Wang 
& Liu, 2018). Scientific data has now become an indispensable material for research, work and 
study. So, there have been studies on scientific data relevance criteria. Sabbata (2012) carried 
out a study on the geographic data relevance, and found that users dealt with geographic entity 
data differently from traditional data. Relevance criteria specific to geographic data emerged, 
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such as directionality, spatio-temporal, visualization. Gao Fei (2017) focused on the relationship 
between scientific data user relevance criteria and clues. Wei Caoyuan (2018) carried out a 
research on the relationship between the scientific data relevance criteria and perceived 
value, and its influence on the relevance judgment. The results showed that the relevance 
criteria promoted the formation of perceived value, and the scientific data retrieval behavior 
was similar to the purchase behavior of commodities. Zhang Guilan (2018) also conducted a 
classification study on the relevance criteria of scientific data.

At the same time, these studies have revealed some limitations. Firstly, different scholars 
put forward different relevance criteria, and there were great differences in classification. For 
example, in the image relevance criteria study, Youngok (2000) presented 9 criteria and Hung 
(2005) presented 12 criteria. Secondly, The expression of terms is vague, and the relevance 
criteria of the same meaning have different expressions in different studies, for example, 
accuracy and reliability, utility and usefulness (Xu, 2006). An important reason for this limitation 
was that scholars didn’t have a consistent understanding of the concept of relevance criteria 
and didn’t make a clear distinction between metadata, clues and criteria. Wang Peiling (1994) 
proposed a document selection model based on the lens theory, presenting a relatively clear 
relevance judgment process. In the model, the literatures’ information elements and relevance 
criteria were clearly defined. Information elements provided clues for users, and the relevance 
criteria were the product of cognitive processing in the mind. Balatsoukas (2012) recorded the 
user’s AOI (area of interest) in the retrieval process through eye tracker, and explored the web 
page relevance criteria through in-depth interview, making the relevance judgment process 
more intuitive and visual.

Scholars have done a lot of research on metadata and relevance criteria. Various empirical 
studies proved that both metadata and relevance criteria affected user relevance judgment. 
And there must be a relationship between metadata and relevance criteria. But there were 
few studies focused on this point. So the paper would concentrate on the relationship between 
metadata and relevance criteria to help better understand relevance judgment process.

3. METHODS
3.1 CONCEPT MODEL AND RESEARCH HYPOTHESIS

Strictly speaking, relevance does not behave; people behave (Saracevic, 2015). Scholars have 
carried out a large number of experiments to explain relevance by observing and describing a 
user’s behavior in the relevance judgment of information. Relevance judgment is an information 
cognitive process (Gwizdka, 2014). Wang Peiling proposed a document selection model in 
which users process the information to form relevance criteria. David Bodoff’s integrated 
model of browsing and search relevance argues that users make judgements after focusing on 
document characteristics. According to cognitive psychology, in the retrieval process, a user’s 
eyes will constantly focus on metadata from the outside world. The metadata then stimulates 
the user’s brain to process the received information. 

Psychologist Egon Brunswik proposed the lens model to solve the problem of limited human 
rational judgment. The environment information that the user pays attention to is the lens, and 
the perceived stimuli form the clue. The objects that the clue reflect in the memory are mental 
representations. Based on this theory, the concept model was proposed (Figure 1). Scientific 
data metadata make up the object environment information, which can then stimulate users. 
Relevance criteria are mental representations, which are the users’ responses.

Figure 1 Concept model.

Metadata Relevance criteriaCluesstimulate reaction

External environment Internal cognition
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This study hypothesizes that metadata and relevance criteria are joined through clues. The 
objective stimuli the users feel is the clue, and the responses that the brain forms after 
processing clues are relevance criteria. Relevance criteria are influenced by external objective 
metadata information. The scientific data metadata form the independent variable, and 
the relevance criterion is the dependent variable. This study mainly explores the relationship 
between the independent variable and dependent variable.

Variable definitions

(a)	Scientific metadata describe and interpret the content, attributes, and characteristics of 
scientific data. They are objective and real.

(b)	Clues are the interaction product between the objective world and the subjective 
individual, and are the intuitive reactions formed by brain responding to the metadata 
stimulus.

(c)	 Relevance criteria: These criteria are created by the further processing of clues, and they 
are the factor that influences users to make relevance judgments.

3.2 EXPERIMENT AND METHODS

The purpose of this experiment was to explore the relationship between scientific data metadata 
and relevance criteria. The experiment evaluated each type of metadata and its fixation dwell 
time, the relevance criteria users employed to make relevance judgment, and the relationship 
between them. The study combined contextual experiments with interviews to obtain data 
(Figure 2). An eye tracker was used to record each user’s fixation behavior during retrieval, and 
screen-capture video recorded the user’s browsing and clicking behavior. The information 
processing in each user’s mind was obtained through video playback and in-depth interviews.

In our contextual experiment, first, each user’s professional background and how frequently 
they used scientific data were obtained through a questionnaire. Next, the researchers 
introduced the eye movement equipment and explained the experiment. Then, users started 
searching for data according their topic, and this was recorded by video. Finally, the researchers 
interviewed the users while replaying the video.

3.2.1 Participants

The participants’ choice followed three principles. First, participants often retrieve scientific 
data. Second, participants took part in experiment voluntarily. Finally, the retrieval task didn’t 
involve scientific secrets. By referring to the number of subjects in previous studies and the 
amount of tasks involved in later data processing, we finally selected 36 participants.

Questionnaires were handed out to students of a data analysis course to recruit appropriate 
subjects. According to their answers, 36 graduate students who often used scientific data 
sharing platforms (such as NCBI,1 NBS,2 or the national meteorological data network3) 

1	 National Center for Biotechnology Information: https://www.ncbi.nlm.nih.gov/.

2	 National Bureau of Statistics of China: http://www.stats.gov.cn/enGliSH/.

3	 http://data.cma.cn/site/index.html.

Figure 2 Contextual 
experiment process.

Strat Pre-
interview

Data 
retrieval

Interview 
with 

context

End and 
receive 

payment

5 min Time unlimited 30-60min

1.Introduced the 
experiment
2.Gathered users’
demographic data
3.Chose task types

1.Eye tracking recorded the 
user browsing process
2.Thinking aloud
3.Observed user behavior

1.Experimenters and users
looked back at the eye-movement 
video
2.Asked users about  relevance
judgment process of scientific 
data

Time

Process

Content 

https://www.ncbi.nlm.nih.gov/
http://www.stats.gov.cn/enGliSH/
http://data.cma.cn/site/index.html
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were chosen to participate in our experiment. They were majors in agricultural economics, 
crop science, regional development, biological science, feed nutrition, and environmental 
development. They were between 22 and 30 years old. The participants represented the young 
scientific data retrieval group.

We promised to respect participants’ privacy and that the data will only be used for research. 
At the end of the experiment, the participants were paid.

3.2.2 Task

Scientific data is highly specialized. Different research areas have different data platforms. In 
order to meet their actual retrieval needs, participants were given the right to make their own 
choices. Participants chose research task that they were interested in. And they determined the 
data sharing platform needed to complete the task. At the same time, each participant must 
retrieve at least 3 related scientific data to keep the task challenging.

The participants searched for scientific data according to their usual retrieval habits, without 
any limits on the type and number of data sharing platforms. And search time was not limited 
so that the participants would feel no pressure to complete the task.

3.2.3 Data Collection

Eye movement collection
Participants’ eye movements were captured through an eye-tracking device (EyeLink 1000 
plus) as they searched for scientific data. The device had a 17-inch screen with the eye tracker 
embedded in it and permitted a 250-Hz sampling rate with gaze point accuracy down to 0.15°. 
Before the retrieval, each participant’s eyes were adjusted to ensure the accuracy of their 
fixation points. In general, a saccade lasts no more than 100 ms (Duchowski, 2007). Hence, 
we set the minimum fixation to 200 ms, which is the average time people need to read when 
solving problems (Rayner, 2009; Lorigo, 2008). This means that a steady fixation must last 
more than 200 ms (Balatsoukas, 2014).

Interview data collection
After data retrieval, participants were invited to participate in semi-structured interviews based 
on the video of the retrieval process. The questions were as follows.

(a)	Platform choices and data relevance. Why did you choose this platform? Were the data 
relevant or satisfactory? Did the data support the task? If not, what other data did you 
need?

(b)	Data choices process. What information did you pay attention to during browsing? Why 
did you focus on this information? How did this information affect you? Why did you click 
on these data?

(c)	 Inactivity after attention. Why didn’t you choose to click on the data that you already 
focused on? What information made you decide not to click on them?

3.3 EYE TRACKER

The eye tracker hypothesis – that the tasks users choose are determined what they see –is 
based on brain–eye consistency (Nielsen, 2010). The examination of eye movements (such as 
the number of fixations and fixation length) has been used in psychology and cognitive science 
research as a means of understanding the processes of reasoning and decision making (Rayner, 
2009). Since then, the movements of our eyes have been studied to uncover the relationship 
between eye movement and cognitive processes as well as to identify how visual stimuli affects us 
and influences the decisions we make (Jacob and Karn, 2003). Relevance judgment is a cognitive 
process, which is difficult to observe and measure. To better study relevance judgment, an eye 
tracker is a good solution, because cognitive processes such as mental effort and attention can 
be inferred using eye movement data such as saccades and fixations. In an information retrieval 
context, the number and length of fixations have been used to study the attention and energy 
users have focused on search results lists and web pages. The experiment proved that cognitive 
effort is the highest for partially relevant documents and lowest for irrelevant documents 
(Gwizdka, 2014, 2015; CT Yang, 2011). Bucher (2006) studied attention patterns in the process 
of news content selection with an eye tracker, and the results show that some obvious visual 
stimuli (prominent pictures or graphics) actively attract attention. Using eye movement devices, 
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Papaeconomou (2008) studied how users with different learning styles use relevance criteria to 
judge the usefulness of web pages. Balatsoukas (2010, 2010) studied relevance criteria usage in 
the relevance judgment process using an eye tracker. The results showed the effects of ranking 
order and metadata (title, summary, and URL) on the use of relevance criteria. Wenjing Pian 
(2016) used an eye tracker system to capture participant eye movements and found that people 
focus on different information and used different criteria in three types of use contexts.

An eye tracker is a good tool for recording the data information input of users in the retrieval 
process. This study combines eye tracker data with interview data, thus bringing together 
cognitive and behavioral approaches in the study of relevance judgment behavior within the 
context of user–search engine interaction.

3.4 DATA ANALYSIS

3.4.1 Eye movement data collection

This research focuses on the metadata to which users pay attention. Similar metadata (e.g., 
“title,” “abstract,” and “name”) can be grouped together As shown in Figure 3, each column was 
treated as the same area of interest (AOI) in the data list (e.g., “entry name,” “protein name,” 
or “gene name”). The scientific data AOIs users paid attention to were labeled by Data Viewer, 
which is a commercial eye movement analysis tool. The data processing removed extraneous 
data such as post-click comments, residual comments, errors, and ads. A total of 3,359 final 
AOIs were obtained, which were divided into 45 types of metadata, such as “name,” “data 
content,” “title,” “keyword,” “author,” “publish time,” “links,” and “data time.” The recorded 
eye-movement data include the dwell time as well as the number and percentage of fixations.

3.4.2 Interview data analysis

Interview data were coded by three coders using NVivo 11 to ensure coding consistency and 
objectivity. The coding process included three stages. First, coders discussed and designed 
a coding table through precoding. Second, the interview data were coded according to the 
coding table (Appendix 1). Finally, relational nodes were coded by combining interview and eye 
movement data.

Node coding
This experiment involved three variables based on the concept model: metadata of interest, 
clue responses to presented information, and the relevance criteria used in the relevance 
judgment (Table 1). The code was divided into five tree-like nodes: criteria, clues, data type, 
databases, and metadata. According to the interview content and AOIs, the secondary nodes 
were constantly revised (Appendix 1).

Figure 3 Division of AOIs.

INTERVIEW DATA METADATA CLUES CRITERIA

This is the voltage and also the condition. We need to 
compare which one works better.

experimental 
method

more effective

We want to retrieve humidity, temperature. I want 
these indices.

Name match my study topicality

Do not need to pay, agricultural academy Intranet 
can enter.

Share level 
Free

I can share it 
whether it is free

availability

Table 1 Example coding.
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Through coding, a total of 376 criteria nodes were obtained, including criteria such as 
topicality, authority, quality, currency, availability, standardization, usability, convenience, and 
comprehensiveness. A further 320 clue nodes were obtained, including 66 node types such as 
“better” or “can’t be opened.” Finally, 628 information elements were obtained that included 
45 node types such as “title,” “name,” “abstract,” and “data time” (Table 2).

Relationship node coding
We found there were some relationship between metadata and criteria in a certain sentence. 
Metadata always come first, then criteria will come. And the sentences reflect the cognitive 
process of scientific data. So the study encoded the relationship between the metadata and 
criteria (Table 3).

(a)	Auxin is the keyword. The term is gene transcription protein. Then, I found the protein 
name that I’m looking for in the title. So, the data is relevant.

(b)	We need the data from 2010 to 2020. But these data are too old, and this source does 
not have data from 2010. We would have to spend money to access these data, which is 
more trouble.

Metadata, clues, and relevance criteria were linked together through relational node coding 
in order to link user attention with a series of cognitive responses. Cross node analysis was 
performed on relational nodes to obtain weights. For instance, in Table 4, which shows an example 
of partial cross analysis, when users saw data time, they thought about the time dimension 
seven times, thought the data are new once, and thought the data are old three times.

NODE MATERIAL SOURCES NUMBER

criteria 33 376

clues 32 320

data type 22 31

databases 18 43

metadata 33 628

Table 2 Number of coding 
nodes.

METADATA RELATIONSHIP CLUES RELATIONSHIP CRITERIA

1 Key word

Title 

Name 

stimulate I’m looking for process Topicality 

2.1 Data time stimulate Time span

Update time

process Topicality

Currency

2.2 Cost stimulate Spend money to buy process Convenience

Table 3 Example relation code.

METADATA CROSSOVER 
NODES

CLUES DATA TIME AUTHOR PUBLISH TIME

time dimension 7

time is new 1 4

time is too old 3 2

time span 7

continuous data 4

difficult to obtain 1

research content is similar 1

Skepticism 1

better known 2

Table 4 Example of partial 
cross analysis.
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4. RESULTS
Through the contextual experiment and interview, the following results were obtained. (1) Users 
mainly paid attention to 45 types of scientific metadata, and used a total of nine relevance 
criteria to make relevance judgments when searching for data. (2) The conceptual model was 
validated. In a relevance judgment, the clues were the stimulus felt by the users when seeing 
the metadata, and the relevance criterion was the response formed by the clues.

4.1 SCIENTIFIC DATA METADATA AND RELEVANCE CRITERIA

4.1.1 Scientific data metadata

As shown in Figure 4, 45 types of metadata and their dwell times were obtained. The longest 
dwell time was for “name” (430,638 ms). The percentage of total dwell time spent on “name” 
was 14.65%. The other metadata with the most dwell times were “data content” (8.2%), 
“title” (7.25%), “keyword” (7.15%), and “data time (6.73%). The results in Figure 5 further 
show that topicality was mainly invoked when the users saw metadata such as “name,” “data 
content,” “title,” and “keyword.” Hence users spent most of their energy on topical judgment 
(Balatsoukas, 2012). These metadata were common across all fields of study.

Figure 4 Dwell time for each 
type of metadata.

Figure 5 Differences in AOI 
data for the two groups.
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Users paid less attention to metadata with shorter dwell times. The shortest dwell time was 
for “resolution” (1,212 ms), which accounted for 0.04% of the total dwell time. In addition, the 
dwell times for “CDs,”4 “citation frequency,” “reviewed,” and “gene function” were respectively 
1,634 ms, 1,944 ms, 7,452 ms, and 8,278 ms, which accounted for 0.06%, 0.07%, 0.25%, and 
0.28% of the total dwell time, respectively. These metadata varied according to field of study. 
Users majoring in meteorological remote sensing paid attention to “resolution.” Users majoring 
in biological genetics paid attention to “reviewed” and “gene function.”

Therefore, a comparative analysis was made on the different fields of study of the users. The users 
majoring in bioscience, crop science, and feed research were classified as the “experimental” 
group, because their main data were obtained from laboratory experiments, and the purpose of 
data retrieval was mainly to compare those data with their own research data. The users majoring 
in agriculture economics, meteorology, and regional development research were classified as 
the “investigational” group, because their main data were collected from data-sharing platforms 
such as NBS, NCBI, and the National Earth System Science Data Sharing Infrastructure.

The results of this comparative analysis show that there are significant differences in the 
dwell times of some subject-relevant metadata, such as “data time,” “data content,” “gene 
location,” “gene sequence,” “gene function,” and “experimental methods.” Investigational 
users paid more attention to “data time and “data content” because data from the search 
were their research objects and the research always had certain requirements with respect to 
region and time. Experimental users paid more attention to “gene location,” “gene sequence,” 
and “gene function,” which are subject-relevant metadata. Moreover, they performed a lot 
of laboratory experiments, so “experimental methods” also was paid more attention.

At the same time, the study also found that there are no significant differences in metadata 
common to the two groups such as “title,” “keyword,” “abstract,” “number of results,” and 
“institute.” These metadata are essential for relevance judgment, regardless of the field of study.

4.1.2 Scientific data relevance criteria 

Nine relevance criteria were obtained through data coding: topicality, availability, quality, 
completeness, authority, currency, convenience, usability, and standardization (Table 5).

Topicality was the most frequent criterion, and was 44.80% of all criteria nodes. Availability and 
quality made up 12% and 11.20% of all criteria nodes, respectively. Their usage adds up to about 
70% of all usage (Table 6). The use of topicality, availability, and quality accounts for the majority 
of usage, and the remaining six criteria also play a significant role in the final relevance judgment. 
However, frequency was not consistent with importance. For example, in the interview, one user 
mentioned that “I am a student of geography; I want to see if the format is correct.” When the 
currency, usability, standardization, and other criteria did not meet the users’ needs, users could 
decide that the data were irrelevant, even if topicality and quality were satisfied well.

4	 CDs: Coding Sequence, a term of structural genomics.

CRITERIA

Topicality The data is consistent with the user’s research, such as data related in terms of 
content, time, and region.

Availability The user can obtain the data without any external factors (i.e. no access permission, 
no download links, high prices, etc.).

Quality The quality of data, for example, whether the data is accurate, correct, and valid.

Standardization The data classification system and collection process are consistent with national 
requirements.

Authority Users can trust this data, mainly referring to a person or an organization that 
publishes influential data.

Comprehensiveness The data has full coverage, or the data is complete without missing any elements.

Convenience It is convenient to retrieve, obtain, and use the data.

Usability The data can be used without cognitive limitations or formatting problems.

Currency The data is valuable to the research and valid for only a certain period of time, such 
as the publication date is recent, or not outdated.

Table 5 Criteria definitions.
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The relevance criteria vary with respect to type of information carrier. The relevance criteria of 
documents were the longest and most comprehensively studied. Scientific data and documents 
are both generated in scientific research activities, serve scientific research, and are constantly 
presented. However, there are also some differences between them. Documents contain 
mature knowledge that has been extracted from scientific data by researchers. Therefore, a 
comparison between documents and scientific data more clearly shows the changes caused 
by the essential nature of different information carriers.

Barry, Schamber, Wang Peiling, Saracevic, Taylor and others have discussed the concepts of 
document relevance criteria and their usage. However, because their discussions took place 
in different contexts, the relevance criteria were different, and there is not yet any consensus 
about what a set of criteria should contain. The document selection model studied by Wang 
Peiling is the most similar to the concept model studied in this paper. Therefore, the document 
relevance criteria derived in Wang’s research were compared with the scientific data relevance 
criteria derived in this study.

As shown in Table 7, Wang Peiling proposed 11 document relevance criteria, and this article 
proposes nine scientific data relevance criteria. A comparison of the two studies shows that 
there are three unique criteria for scientific data: comprehensiveness, standardization, and 
convenience. Accessibility is strengthened in importance and novelty disappears. Compared 
with the criteria for documents, the criteria for data had higher purpose, pertinence, and 
practicality, but also poorer substitutability. The purpose for users to retrieve scientific data was 
mainly to support their own research analysis or conclusions, which requires high accuracy and 
consistency. As some users mentioned, “I study the grain output in the past ten years, and 
there is no 2009 output in this data set. I cannot perform the next analysis without this data. I 
need to find it through other channels.” Therefore, the comprehensiveness of the data affected 
the users’ relevance judgment. Moreover, each industry has its own data requirements, and 
each data platform, unit, or laboratory has its own requirements for data. The irregularity of 

RELEVANCE CRITERIA NODES PERCENTAGE

Topicality 168 44.80%

Availability 45 12.00%

Quality 42 11.20%

Completeness 32 8.53%

Authority 29 7.73%

Currency 20 5.33%

Convenience 16 4.27%

Usability 15 4.00%

Standardization 8 2.13%

Total 375 100.00%
Table 6 Percentages of 
relevance criteria nodes.

DOCUMENT RELEVANCE CRITERIA SCIENTIFIC DATA RELEVANCE CRITERIA

Topicality 65.30% Topicality 44.80%

Quanlity 9.40% Availability 12.00%

Scope 9.40% Quality 11.20%

Novelty 5.30% Completeness 8.53%

Currency 2.80% Authority 7.73%

Discipline 2.70% Currency 5.33%

Source 1.70% Convenience 4.27%

Authority 1.10% Usability 4.00%

Special need 1.00% Standardization 2.13%

Time cost 0.80%

Availability 0.20%

Table 7 Comparison of 
document and scientific data 
relevance criteria.
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data severely restricts data sharing and usage. Hence, the standardization of data also affects 
the user’s relevance judgment. These problems do not exist in document relevance judgments, 
because the information transmitted by documents is broader than the information in data, 
and they serve different purposes in scientific research.

Documents contain a large amount of information. Even if the original text cannot be obtained, 
the main or key information can be obtained from the abstract. However, data are different. 
The ultimate goal of users to retrieve data is to obtain and use data. If the data cannot be used, 
their value will be greatly discounted. Therefore, the weight of availability increases in data 
relevance judgment.

In conclusion, the difference in the behaviors of users lies in the essential difference between 
scientific data and documents. Documents are laden with knowledge, whereas scientific 
data are laden with facts. Knowledge is something that human beings can directly process 
cognitively, but facts cannot be processed this way. Humans need to process the data using 
instruments such as Power BI Desktop or CDAT. Therefore, when retrieving data, users pay more 
attention to the availability of data and whether they can be further analyzed and processed.

4.2 RELATIONSHIP BETWEEN SCIENTIFIC DATA METADATA AND RELEVANCE 
CRITERIA

As a whole, the relationship between metadata and relevance criteria can be summarized as 
one stimulation to multiple responses and multiple stimulations to one response. There is an 
intermediate element – clues – between metadata and relevance criteria. The users must first 
experience the stimulation presented by the metadata, and this stimulation consists of clues. 
Then, users process the stimulation to form the relevance criteria. The concept model was 
verified by the experiment.

The relationships and weights among metadata, clues, and criteria are visualized in Figure 6. 
The same metadata produced different stimulations through users’ eyes. For example, when 
users see “name,” one might respond with matches my study, for example, “this index is the 
main content of my research” (Participant 22). Someone else might respond with fits my needs, 
for example, “according to my research, I’m looking for wheat, but there’s very little about 
wheat” (Participant 7). When users see the “data time,” one might respond that data are old, for 
example, “only the 2013 digital version is available, which is too old” (Participant 22). Another 
person might respond with difficult to obtain, for example, “the latest data are hard to get” 
(Participant 24). It highly depends on the user’s cognitive workspace, which is closely related to 
work experience, research direction, and the user’s understanding of his/her problems.

As users responded to different stimulations, the relevance criteria invoked in the brain also 
changed. When users could only download data from 2013, they used currency to judge 
the relevance of the data. When users thought that data were difficult to obtain, they used 
availability to judge the relevance of the data.

Different metadata will stimulate users to employ the same relevance criteria for relevance 
judgment. When users focused on metadata such as “title,” “abstract,” “keyword,” “name,” 
“data content,” “description,” or “species,” topicality was stimulated. For example, for “species” to 
topicality: “I’m looking for a related species, but I don’t see it here.” (Participant 3); for “keyword” 
to topicality: “I directly searched for bagasse, but I only saw an item about sweet potato. I thought 
this study would be similar to mine, so I clicked on it.” (Participant 21); and for “title” to topicality: 
“I read the title and it is not related to my search.” (Participant 25). When users focused on items 
such as “auditable,” “journal,” “author,” and “institute,” authority was stimulated. For example, 
for “auditable” to authority, “Auditable data5 is authority.” (Participant 7); and for “journal” to 
authority: “The journals have great reputation. We might use data from very famous journals.”

Metadata related to topicality are the most complex and include subject-irrelevant metadata6 
and subject-relevant metadata7 in different fields. Metadata related to other relevance criteria 

5	 Auditable data: data audited by a third party.

6	 Subject-irrelevant metadata: metadata are irrelevant to the subject, such as “title”, “key word”, “abstract”, 
“publish time” and so on.

7	 Subject-relevant metadata: metadata are relevant to the subject, such as “gene location” and “gene 
length” is relevant to genetics; “data format” and “data area” is relevant to geography.
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(such as quality, authority, and availability) only include subject-irrelevant metadata. Twenty-
five types of metadata stimulated users to use topicality to make the relevance judgment, and 
these types can be divided into three categories. The first category is subject-irrelevant metadata, 
and this category includes metadata like “name,” “title,” “keyword,” “abstract,” “annotation,” 
“author,” “recommended data,” “institute,” “links,” “description,” and “similar data.” The second 
category is metadata related to meteorology, agricultural economics, and remote sensing and 
includes “data area,” “data content,” and “data time.” The third category is metadata related 

Figure 6 Relationships 
among metadata, clues, and 
relevance criteria.
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to biology, genetics, and engineering and includes “gene function,” “gene length,” “gene 
location,” “structure,” and “gene sequence.” However, nine metadata types stimulated users 
to use quality when making relevance judgments: “analyze results,” “auditable,” “author,” 
“citation frequency,” “correct rate,” “experimental method,” “institute,” “matching degree,” 
and “reviewed.” Five metadata stimulated users to use authority when making relevance 
judgments: “author,” “journal,” “institute,” “auditable,” and “description.” Metadata associated 
with quality and authority were irrelevant to subject. Hence, in the relevance judgments, the 
differences in the metadata of different groups were mainly reflected in topicality.

Using the dwell times of metadata (Figure 4) and relationships among metadata and criteria 
(Figure 6), the times spent on the nine relevance criteria were calculated (Table 8). Topicality 
took the longest, accounting for 65.7% of the total time, followed by availability and quality, 
which accounted for 6% and 5.89% of the total time, respectively. The criteria dwell times 
represent users’ effort in scientific data retrieval.

åcriteria dwell time = i imetadata dwell time weight*

Regression analysis of the two groups data show a linear relationship (Figure 7), R2 = 0.967, 
P = 0.000. The correlation is significant at the level of a = 0.05. The use frequency of relevance 
criteria is positively correlated with the effort expended in relevance judgments. For example, 
topicality was recorded 168 times in interview data, and users also spent the most energy on 
topical-based relevance judgment. 

5. DISCUSSIONS
The study found nine scientific data relevance criteria, namely, topicality, availability, quality, 
standardization, authority, comprehensiveness, convenience, usability and currency. Most 
previous studies had focused on documents and web pages, with a few on images and video. 
The research situation involved work, life, entertainment, etc. Research subjects included 
professors, students, doctors, journalists, etc. The results showed there was an overlap between 
the relevance criteria mentioned in this study and the previous studies with new criteria 

CRITERIA NODE NUMBER PERCENTAGE CRITERIA DWELL TIME PERCENTAGE

topicality 168 44.80% topicality 1932354 65.70%

availability 45 12.00% availability 176395 6.00%

quality 42 11.20% quality 173161 5.89%

completeness 32 8.53% convenience 170221 5.79%

authority 29 7.73% completeness 169633 5.77%

currency 20 5.33% authority 139940 4.76%

convenience 16 4.27% currency 122595 4.17%

usability 15 4.00% standardization 40100 1.36%

standardization 8 2.13% usability 16933 0.58%

total 375 100.00% total 2941332 100.00%

Table 8 ：Percentage of criteria 
frequencies and dwell times

R² = 0.967
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Figure 7 Regression analysis of 
two groups data.
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emerged from the data analysis (Sarah Albassam, 2018). The appearances of new criteria 
were directly related to the essence of information carriers. For example, images selection 
needed to consider resolution and size. Documents selection needed to consider languages. 
Web pages selection needed to consider link security and information reliability. For scientific 
data, comprehensiveness and standardization were two unique criteria. Comprehensiveness 
focused on the continuity and integrity of data in time and regional sequences. Standardization 
focused on data classification system and statistical methods. Because scientific data had a 
strong professional, domain, and practicability, users had identified the need of data before the 
retrieval, without inspiration. This was why many scholars mentioned novelty in their studies, 
but it did not appear in this paper. At the same time, the study cannot ignore the influence of 
external situation and user’s cognitive on the change of relevance criteria. Audrey Laplante 
suggested that although research had found that some of the relevance criteria (quality and 
authority) found in documents and web pages still applied to music environments, there would 
be some unique music relevance criteria. As Saracevic pointed out, relevance research cannot 
be separated from the situation, and should consider the dynamic interaction between the 
internal and external factors of the situation. 

More than one scholar tried to generalize a set of relevant criteria across different dimensions, 
but without success (Schamber, 1996; Bales and Wang, 2005). There were two reasons, one 
reason behind this difficulty was that different studies had various labels and definitions for 
similar relevance criteria and the grouping/categorization of the findings also varied among 
different studies. Another challenge in comparing relevance criteria studies was that various 
methodologies had been applied in relevance criteria literature (Maglaughlin and Sonnenwald, 
2002; Savolainen and Kari, 2006). Relevance was a multidimensional, dynamic process, and 
information carrier was only one of the dimensions. Here, we could be sure that the change of 
information carrier will certainly cause the change of relevance criteria. 

Different users may have different responses when receiving the same stimulation, and may 
have the same response when receiving different stimulation. In the Document selection model 
put forward by Wang Peiling, a document (distal object) was represented by a set of document 
information elements (metadata) as clues. Document information elements were processed 
to judge a document on several criteria. This study enriched and expanded document selection 
model, which not only clearly defined the concepts of information elements and clues, but also 
explored the corresponding relations between them. Panos Balatsoukas and Gao Fei also used 
eye tracker to study relevance criteria, but they all focused on the fixation of metadata and the 
usage of relevance. They ignored the relationship between metadata, clues and criteria in the 
information processing process. According Hochberg’s view of perception, participants were 
able to perceive completely different shapes of the same physical stimulation. His perception 
fundamentally determined his answers to questions about shape, motion, size, depth, etc. In 
the relevance judgment, clues were the cognitive reflection after the user perceived the external 
information, which related to the user’s cognitive workspace. For example, when seeing a data 
from 2008, somebody said that was consistent with study time and somebody might think 
the time was too old. The reason was user’s different needs and cognitive abilities. Human 
perception involved inferences when it came to recognizing something, and this recognition 
pattern explained why what we know determined what we see. Through analysis, it can be 
seen that users’ cognitive workspace played a crucial role in the process from receiving to 
perceiving and processing information. The workspace was a relatively stable cognitive state 
formed under the long-term working and retrieval environment.

In relevance judgment, it was not only necessary to study how relevance criteria affect the 
judgment process, but more importantly, how metadata affected the relevance judgment process 
through criteria. The interpretation of informational clues provides a novel approach to deepen 
empirical research on how people use information content (Savolainen, 2010). Such research 
efforts would provide opportunities to take one step closer to the goal proposed by Gerstberger 
and Allen (1968), that is, to explore “the actual process of using the information”. Topicality was 
the fundamental criterion, and users spend the most energy on it and use it most frequently (Abe 
Crystal; Rahayu A Hamid; Sedghi, 2013; Sarah Albassam, 2018). Student used titles, summaries, 
and connectedness to topic as prime metadata when making web pages judgment (Watson, 
2013). Users used titles, key words, and abstract to topic as prime metadata of relevance when 
making documents judgment. And users used name, data area, data content, species and so 
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on to topic as prime metadata of relevance when making scientific data judgment. So even if 
users used the same criteria to judge relevance under different information carriers, there were 
differences in the metadata they paid attention to. Only by understanding the fixation differences 
of these metadata can we better improve the scientific data sharing system.

Combined with eye movement data and interview data, it was found that the frequency of 
criteria usage was positively correlated with the amount of attention spent on it. The study used 
eye tracker collecting eye movement data, such as the number and length of fixations, which 
could reveal a more accurate picture of the cognitive effort spent by users during the relevance 
judgment process (Balatsoukas, 2012). Users spent the most attention on topicality, more than 
60%. The other relevance criteria took less than 10% attention. This was consistent with the 
anchoring adjustment strategy in the judgment decision. At the beginning, attention will be 
focused on the topicality, which was an anchor. Subsequently, other criteria were insufficient 
adjustments to this anchor, like accessibility, quality, authority, etc. (Reid Hastie, 2004).

6. CONCLUSIONS
The main purpose of this paper was to explore metadata, relevance criteria, and the 
relationship between them. An eye tracker recorded the attention paid to metadata by users 
during the retrieval. Relevance criteria usage were obtained from interviews. The combination 
of quantitative data obtained by the eye tracker (fixation duration) and qualitative data 
obtained via interviews (relevance criteria, clues and other nodes) makes these research results 
convincing.

Users pay attention to 45 metadata when retrieving scientific data. The 45 metadata can be 
divided into subject-irrelevant metadata and subject-relevant metadata. Subject-irrelevant 
metadata includes “name”, “key words”, “abstract”, and so on. And there are no significant 
differences in subject-irrelevant metadata between investigational users and experimental 
users. Subject-relevant metadata includes “gene location”, “gene length”, “resolution”, and so 
on. Investigational users paid more attention to “data time and “data content” because data 
from the search were their research objects and the research always had certain requirements 
with respect to region and time. Experimental users paid more attention to “gene location,” 
“gene sequence,” and “gene function,” which are subject-relevant metadata.

Nine relevance criteria for scientific data were found in the study, respectively, topicality, 
availability, quality, completeness, authority, currency, convenience, usability, and 
standardization. Because of the essential difference between scientific data and documents, 
users use different criteria. Documents are laden with knowledge, whereas scientific data are 
laden with facts. Knowledge is something that human beings can directly process cognitively, 
but facts cannot be processed this way. Humans need to process the data using instruments. 
Therefore, when retrieving data, users pay more attention to the availability of data and 
whether they can be further analyzed and processed.

When retrieving scientific data, different users may have different responses when receiving 
the same stimulus or the same response when receiving different stimuli. The metadata 
stimulating topicality are the most complex and include subject-irrelevant metadata and 
distinctive subject-relevant metadata. The metadata stimulating other criteria (such as quality 
and authority) have no obvious subject-relevant characteristics.

This paper analyzed the process of relevance judgment for scientific data from the perspective of 
information cognitive processing. The concepts of metadata, clues, and relevance criteria were 
clearly defined through a situation experiment combining eye tracking experiments with interviews. 

This paper provided a theoretical and empirical basis for the next stage in the study of the 
normal form equation of scientific data relevance judgment based on the lens model. The 
practical significance of this study is that it enables the more targeted improvement of a 
scientific data sharing system, such as changing the presentation of pages and providing 
personalized services for users with different needs. This research not only determined the 
metadata that users mainly care about and the relevance criteria of scientific data that are 
frequently used, it also found the corresponding relationships among them. 
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ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Eye movement data sets. The data set include RECORDING_SESSION_LABEL,EYE_
USED,IA_AREA,IA_AVERAGE_FIX_PUPIL_SIZE,IA_DWELL_TIME,IA_DWELL_TIME_%,IA_
FIXATION_%,IA_FIXATION_COUNT,IA_LABEL. All data come from 36 subjects, which were 
got through eye trackers. DOI: https://doi.org/10.5334/dsj-2021-005.s1
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