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ABSTRACT
To confront the global threat of coronavirus disease 2019, a massive number of the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences 
have been decoded, with the results promptly released through the GISAID database. 
Based on variant types, eight clades have already been defined in GISAID, but the 
diversity can be far greater. Owing to the explosive increase in available sequences, 
it is important to develop new technologies that can easily grasp the whole picture 
of the big-sequence data and support efficient knowledge discovery. An ability to 
efficiently clarify the detailed time-series changes in genome-wide mutation patterns 
will enable us to promptly identify and characterize dangerous variants that rapidly 
increase their population frequency. Here, we collectively analyzed over 150,000 SARS-
CoV-2 genomes to understand their overall features and time-dependent changes 
using a batch-learning self-organizing map (BLSOM) for oligonucleotide composition, 
which is an unsupervised machine learning method. BLSOM can separate clades 
defined by GISAID with high precision, and each clade is subdivided into clusters, 
which shows a differential increase/decrease pattern based on geographic region 
and time. This allowed us to identify prevalent strains in each region and to show the 
commonality and diversity of the prevalent strains. Comprehensive characterization of 
the oligonucleotide composition of SARS-CoV-2 and elucidation of time-series trends 
of the population frequency of variants can clarify the viral adaptation processes 
after invasion into the human population and the time-dependent trend of prevalent 
epidemic strains across various regions, such as continents.
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 INTRODUCTION
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rampantly 
worldwide since it was first reported in December 2019, and the momentum of its spread is still 
increasing (WHO. 2020). To address the SARS-CoV-2 pandemic in detail, genome sequencing 
has been performed on a global scale and published by GISAID (Elbe et al. 2017), the SARS-
CoV-2 genome database, having more than 780,000 viral sequences as of March 2021 (https://

www.gisaid.org/). SARS-CoV-2 is an RNA virus with a fast evolutionary rate that has already been 
classified into eight clades by GISAID, and epidemics caused by new variant have been known 
to occur (Benvenuto et al. 2020; Gorbalenya et al. 2020; Sun et al. 2020; Hu et al. 2021; Kirby 
2021; Wang et al. 2021). Because the number of registered genome sequences is increasing 
explosively, it has become difficult to cope with the current and future situation using only the 
conventional phylogenetic tree method based on multiple sequence alignment, which requires 
an enormous amount of computation time for a massive number of sequences. Therefore, it 
is imperative to develop a sequence alignment-free method that will enable us to easily grasp 
the whole picture of the big-sequence data and support efficient knowledge discovery from 
them.

By focusing on the frequency of short oligonucleotides (e.g., tetra- and penta-nucleotides) in a 
large number of genomic fragments (e.g., 10 kb) derived from a wide variety of species, we have 
developed an unsupervised explainable AI (batch-learning self-organizing map; BLSOM), which 
enables separation (self-organization) of the genomic sequences by species and phylogeny 
and explains the causes that contribute to this separation (Abe et al. 2003 ). In the analysis 
of genomic fragments of a wide range of microbial genomes, over 5 million sequences can be 
separated by phylogenetic groups with high accuracy (Abe et al. 2020). 

In a prior analysis of all influenza A strains, viral genomes were separated (self-organized) by 
host animals based only on the similarity of the oligonucleotide composition, although no host 
information was provided during BLSOM learning (Iwasaki et al. 2011). On a single map, all 
viral sequences could be separated, and notably, BLSOM is an explainable AI that can explain 
diagnostic oligonucleotides, which contribute to host-dependent clustering. When studying 
the 2009 swine-derived flu pandemic (H1N1/2009), we could detect directional time-series 
changes in oligonucleotide composition because of possible adaptations to the new host, 
namely humans (Iwasaki et al. 2011), showing that near-future prediction was possible, albeit 
partially (Iwasaki et al. 2013).

We have previously revealed lineage-specific oligonucleotide compositions for a wide range 
of virus lineages and established a method to identify and classify viral-derived sequences 
in tick intestinal metagenomic sequences (Qiu et al. 2019). In the case of SARS-CoV-2, we 
analyzed time-series changes in mono- and oligo-nucleotide compositions and found their 
time-dependent directional changes that are thought to be adaptive for growth in humans, 
which allowed us to predict candidates of advantageous mutations for growth in human 
cells (Ikemura et al. 2020; Wada, Wada & Ikemura. 2020; Iwasaki Abe & Ikemura. 2021). 
Furthermore, we recently performed BLSOM analysis on di- to penta-nucleotide compositions 
in approximately 150,000 SARS-CoV-2 genomes. Because the accuracy of separation by clade 
increased as the oligonucleotide length increased, in this report, we present the BLSOM results 
for the pentanucleotide composition. BLSOM could serve as a powerful tool for comprehensive 
characterization of the oligonucleotide composition of SARS-CoV-2 and time-series trends of 
prevalent epidemic strains across various regions, such as continents.

METHODS
SARS-COV-2 GENOME SEQUENCES

The full-length genome sequences of SARS-CoV-2 were downloaded from the GISAID 
database on November 4, 2020. The total number of sequences was 170,190. The full length 
of the SARS-CoV-2 genome reference sequence (strain name: Wuhan-Hu-1, accession number: 
MN908947.3), which includes 5’ and 3’ untranslated regions (UTRs) and polyA tail, is 29.9 kb. To 
analyze more genome data, after removing the poly (A)-tail sequences, we set the minimum 
threshold length to 27 kb, which includes a major part of coding sequence.

https://doi.org/10.5334/dsj-2021-029
https://www.gisaid.org/
https://www.gisaid.org/
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OLIGONUCLEOTIDE FREQUENCY AND ODDS RATIO

Pentanucleotide frequencies and odds ratios were used in the present study. The pentanucleotide 
odd ratios (observed/expected values) were calculated using the formula PVWXYZ = ƒVWXYZ/
ƒVƒWƒXƒYƒZ, where ƒV, ƒW, ƒX, ƒY and ƒZ denote the frequencies of mononucleotides V, W, X, Y and 
Z, respectively, and ƒVWXYZ denotes the frequency of pentanucleotide VWXYZ (Karlin et al. 1998).

BLSOM

Kohonen’s self-organizing map (SOM), an unsupervised neural network algorithm, is a powerful 
tool for clustering and visualizing high-dimensional complex data on a two-dimensional 
map (Kohonen, 1990; Kohonen et al., 1996). We modified the conventional SOM for genome 
informatics on the basis of batch learning, aiming to make the learning process and the resulting 
map independent of the order of data input (Kanaya et al. 2001; Abe et al. 2003). The newly 
developed SOM, BLSOM, is suitable for high-performance parallel computing and, therefore, for 
big data analysis. The initial weight vectors were defined using principal component analysis 
(PCA), based on the variance-covariance matrix, rather than by using random values. The 
weight vectors (wij) were arranged in a two-dimensional lattice denoted by i (= 0, 1,…, I–1) and 
j (= 0, 1,…, J–1) and were set and updated as described previously (Kanaya et al. 2001; Abe et 
al. 2003). A BLSOM program suitable for PC cluster systems is available on our website (http://

bioinfo.ie.niigata-u.ac.jp/?BLSOM). After constructing BLSOM and its 3-D view explained in the text, 
we first assigned the lattice point that has high number of sequences in each continent to the 
representative point of the continent and manually defined the lattice points surrounding the 
representative point as subclusters.

RESULTS AND DISCUSSION
BLSOM FOR PENTANUCLEOTIDE COMPOSITION AND THEIR ODDS RATIO

It should be mentioned here that SARS-CoV-2 genomes have changed their mononucleotide 
composition during the course of the epidemic in humans, reducing C and increasing U, 
regardless of clade (Mercatelli et al. 2020; Wada, Wada & Ikemura. 2020; Iwasaki Abe & Ikemura 
2021), a process which is thought to be caused by the APOBEC family enzymes (Mangeat et 
al. 2003; Simmonds 2020). It should also be noted here that GISAID clade was defined by a 
nomenclature system developed by the GISAID group and divided into seven clades, including 
S, L, V, G, GH, GR and GV, based on marker mutations by November 2020. The clade division 
was initially S and L during the early epidemic stage, but L was further divided into V and G, 
and then later, G was divided into GH, GR and GV. The marker mutations of these clades include 
NS8-L84S for clade S, NSP6-L37F and NS3-G251V for clade V, and S-D614G for clade G. In 
addition to clade G, NS3-Q57H, N-G204R and S-A222V mutations define the clades GH, GR and 
GV, respectively (Elbe et al. 2017, https://www.gisaid.org/). Considering the clade-independent 
tendency primarily caused by the APOBEC enzymes (Simmonds 2020), we performed BLSOM 
analysis of not only the pentanucleotide composition but also their odds ratio, which can 
reduce the effects caused by changes in mononucleotide composition. Additionally, to check 
the robustness of sequence accuracy, we used datasets with different sequence accuracies: 
167,905 sequences with less than 10% unknown nucleotides other than ATGCs in the genome 
sequence and 130,753 sequences with less than 1% unknown nucleotides; for each sequence 
dataset, the number of cases by region and clade is shown in Table 1.

First, we constructed BLSOM for sequences with less than 10% unknown nucleotides, using 
the pentanucleotide composition and their odds ratios (Figure 1A and B). BLSOM utilizes 
unsupervised machine learning, and the genome sequences are clustered (self-organized) 
on a two-dimensional plane, based only on the difference in the vector data in a 1024 
(=45)-dimensional space. Lattice points that include sequences from more than one clade are 
indicated in black, those that contain no genomic sequences are indicated by blank, and those 
containing sequences from a single clade are indicated in the color representing the clade. 
The odds ratio (Figure 1B) gave more accurate separations (a smaller percentage of black grid 
points), possibly by excluding effects owing to the clade-independent time-series change in the 
mononucleotide composition (Iwasaki Abe & Ikemura. 2021), which affected all SARS-CoV-2 
clades. Even for the sequences with low-sequence accuracy, clade-dependent separation 
occurs, allowing us to understand characteristics of the oligonucleotide composition that are 

http://bioinfo.ie.niigata-u.ac.jp/?BLSOM
http://bioinfo.ie.niigata-u.ac.jp/?BLSOM
https://www.gisaid.org/
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specific to each clade; thus, oligonucleotide-BLSOM is thought to be a robust method. However, 
it is clear that BLSOMs for sequences with less than 1% unknown nucleotides (Figure 1C and D) 
gave more accurate separation than those listed in Figure 1A and B, and the highest resolution 
was obtained for the BLSOM for the odds ratio (Figure 1D).

Clades have been defined by the statistical distribution of phylogenetic distances in tree 
construction based on multiple sequence alignments (Han et al. 2019; Tang et al. 2020), 
whereas BLSOM is a sequence alignment-free analysis that is suitable for the analysis of massive 
data. Because sequences at different locations on BLSOM have different oligonucleotide 
compositions, clustering according to clades means that sequences belonging to different 
clades have different oligonucleotide combinations, that is, differential combinations of 
mutations.

3D DISPLAY OF THE DATA FOR DIFFERENT CONTINENTS

Using BLSOM (Figure 1D) for the pentanucleotide odds ratio, Figure 1E examines the classification 
according to four continents (Asia, Europe, North America, and Oceania) that have very 
large numbers of sequences and thus selected as the main epidemic continents. Here, the 
lattice points containing sequences of different continents are displayed in black, and those 
containing only sequences of a single continent are displayed in the color specifying each 
continent. Although not as clear as clade-dependent separations, regional differences have 
been observed, which should reflect differential shares of prevalent variants among continents. 
However, it is apparently difficult to obtain sufficient information from the results shown in 

(A) NUMBER OF SEQUENCES WITH LESS THAN 10% UNKNOWN NUCLEOTIDES

CLADE\
CONTINENT

ASIA EUROPE NORTH 
AMERICA

OCEANIA AFRICA SOUTH 
AMERICA

UNKNOWN TOTAL

S 794 1,860 3,449 664 110 74 0 6,951

L 823 3,196 600 65 4 11 0 4,699

V 247 4,687 402 253 13 23 0 5,625

G 979 20,928 6,568 1,106 1,141 461 0 31,183

GH 2,058 10,325 23,916 964 232 176 0 37,671

GR 2,657 42,888 5,251 11,135 1,632 1,129 0 64,692

GV 3 12,229 3 14 0 0 0 12,249

O 2,220 1,127 553 531 60 25 0 4,516

Non-human 
host

35 247 19 0 1 4 13 319

#Total 9,816 97,487 40,761 14,732 3,193 1,903 13 167,905

(B) NUMBER OF SEQUENCES WITH LESS THAN 1% UNKNOWN NUCLEOTIDES

CLADE\
CONTINENT

ASIA EUROPE NORTH 
AMERICA

OCEANIA AFRICA SOUTH 
AMERICA

UNKNOWN TOTAL

S 731 1,047 3,056 466 71 58 0 5,429

L 760 1,964 549 49 2 10 0 3,334

V 228 3,036 366 207 10 17 0 3,864

G 877 15,200 5,071 858 634 300 0 22,940

GH 1,923 8,365 19,014 717 191 150 0 30,360

GR 2,425 32,518 4,549 9,166 1,180 871 0 50,709

GV 3 10,712 3 11 0 0 0 10,729

O 1,824 522 349 415 30 9 0 3,149

Non-human 
host

30 176 19 0 1 0 13 239

#Total 8,801 73,540 32,976 11,889 2,119 1,415 13 130,753

Table 1 Number of SARS-CoV-2 
genome sequences with less 
than 10% (A) and less than 
1% (B) unknown nucleotides 
used in this study.

Unknown: genome sequences 
for which continent was not 
registered.



Figure 1E alone. BLSOM is equipped with various visualization tools for analysis results; therefore, 
we next showed the number of sequences belonging to each lattice point with a 3D display. 

Again, using the BLSOM shown in Figure 1D, Figure 2 shows the number of sequences belonging 
to each lattice point for each clade in each continent as a vertical bar, which is colored by 
continent, as shown in Figure 1E. Looking laterally at a particular clade, each clade consists 
of several subclusters, each consisting of several high peaks surrounded by many low peaks. 
Different subclusters observed in each clade are distinguished by numbering in each figure, 
but if they are located in the same zone on BLSOM, the same number is given even if they 
are of different continents. Looking vertically at a particular continent, sequences of different 
subclusters of different clades exist in different amounts, and some subclusters are only in 
a particular continent, that is, the prevalent variants for each continent can be visualized in 
an easy-to-understand manner. In Supplementary Figure S1, the data shown in Figure 2 are 
displayed in 2D, and referring to the quantitative results in Figure 2, we defined sequences 
attributed to each subcluster in each clade.

TIME-SERIES ANALYSIS

The fact that sequences belonging to one clade were clearly separated on BLSOM indicates the 
importance of subdivision of each clade, and the separation on BLSOM is thought to be a good 
indicator of this subdivision. To further examine the biological significance of the subclusters of 
each clade on BLSOM, we visualized the number of sequences collected in each month in each 
region as a vertical bar differentially colored according to clade (Figure 3). Looking laterally at a 
continent, the time-series quantitative changes among different clades or different subclusters 
of one clade are clear. Looking at the results for a particular collection month for different 
continents longitudinally, quantitative changes among different clades or different subclusters 
of one clade are again clear, depending on the continent. 

Next, for each clade in each continent, we quantitatively analyzed the time-series changes 
in the proportion of its subclusters using a 100% stack bar graph (Figure 4). The percentages 
of sequences in different subclusters are distinguished by different colors, and when the total 
number of sequences for a certain month is more than 100, the data for that month are 
indicated by a thick horizontal bar. We focused mainly on such months.

In the clade S/L/V detected in the early stage of the epidemic (December 2019– March 2020), 
three major subclusters of each clade were observed and distinguished by suffix numbers, 
and most sequences belonged to the two subclusters: S1/L1/V1 and S2/L2/V2. In Asia, many 
sequences belonging to S1/L1/V1 were detected in December 2019, but in Europe and other 
regions, S2/L2/V2 were more abundantly detected in March and April 2020 than S1/L1/V1, and 
the proportion became more pronounced in April than in March. In March and April in Europe, 
a remarkable number of sequences belonging to S3/L3/V3 were also detected, showing three 
different variants prevalent at the beginning of the epidemic in Europe. Far fewer than 100 

Figure 1 BLSOM for 
pentanucleotide usage. (A) 
Pentanucleotide composition 
and (B) their odds ratio for 
sequences with less than 10% 
unknown nucleotides. (C) 
Pentanucleotide composition 
and (D) their odds ratio for 
sequences with less than 
1% unknown nucleotides. 
Lattice points that include 
sequences from more than 
one clade are indicated in 
black, those that contain 
no genomic sequences are 
indicated by blank, and those 
containing sequences from a 
single clade are indicated in 
color as follows: S (█), L (■), 
V (■), G (■), GH (■), GR (■), 
GV (■), O (■), non-human 
host (■). (E) Distribution 
of sequences by continent 
on the BLSOM with the 
pentanucleotide odds ratio. 
Lattice points that include 
sequences from more than 
one continent are indicated 
in black, those that contain 
no genomic sequences are 
indicated by blank, and those 
containing sequences from a 
single continent are indicated 
in color as follows: Asia (■), 
Europe (■), North America (■), 
Oceania (■), Africa (■), South 
America (■).



6Abe et al.  
Data Science Journal  
DOI: 10.5334/dsj-2021-029

sequences were detected after May; sequences belonging to S1/L1/V1 were mainly detected 
in Asia and those belonging to S2/L2/V2 were shown in other regions, presenting differential 
trends in prevalent variants among continents.

For clade G, which started the epidemic in Europe in February, we defined five subclusters. 
In February, roughly equal amounts of sequences belonging to G1 and G2 were detected 
in Europe and North America, but as the epidemic progressed, those belonging to G2 were 
mainly detected in Europe, whereas those belonging to both G1 and G2 were prevalent in North 
America. In Asia, only sequences belonging to G1 were detected; in Oceania, those belonging 
to G2 accounted for about 10% in the early stage, but afterward, those belonging to Oceania-
specific G5 accounted for the majority.

For GH, we defined seven subclusters, including GH1 and GH2, which dominated in North 
America and Europe, respectively. In North America, in addition to GH1, several months contain 
approximately 20% of the sequences belonging to GH3, GH5, and GH6. In Asia, only GH1 has 
been detected. In Oceania, only GH4 and GH7, which were specific to this region, were detected; 
initially, GH4 was dominant, but after July, GH7 was primarily detected.

For GR, we defined five subclusters, including GR1 and GR2, which dominated in North America 
and Europe, respectively. Moreover, in Europe, GR1 was detected to the same extent as GR2 in 
February, but as the epidemic progressed, GR2 began to predominate. In North America, the 
occupancy of GR1 and GR2 varied to some extent depending on the collection month. In Asia, 
GR1 was mainly detected, and in Oceania, only region-specific subclusters have been detected. 

Figure 2 3D display of viral 
classification by clade 
and continent. The Z-axis 
corresponds to the number 
of sequences attributed to 
each lattice point. Results 
for all continents are shown 
in the ALL panel for each 
clade. In clades G, GH, GR and 
GV, lattice points where less 
than 5 sequences exist are 
not shown. The vertical bars 
for individual continents are 
distinguished by the following 
colors: Asia (■), Europe (■), 
North America (■), Oceania 
(■). Different subclusters are 
given suffix numbers.
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Figure 3 3D display of 
temporospatial changes. 
The Z-axis corresponds to 
the number of sequences 
attributed to each lattice 
point. Results for all collection 
months are shown in the ALL 
panel for each continent. The 
vertical bars for individual 
clades are distinguished by 
the following colors: S (■), L 
(■), V (■), G (■), GH (■), GR 
(■), GV (■).
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Figure 4 Analysis of 100% 
stack bar graph for time-series 
transition in each continent 
for each subcluster in clades 
S (A), L (B), V (C), G (D), GH 
(E), and GR (F). The colors of 
each subcluster are indicated 
at the bottom of each figure. 
The results for months with 
more than 100 sequences are 
shown as thick horizontal bars. 
The number of sequences 
used in this analysis is given in 
Supplementary Table S1.
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These temporospatial changes in subclusters show that the subcluster is the separation 
(self-organization) that reflects biological significance and is fundamental information for 
understanding the overall picture of the SARS-CoV-2 variants.

BIOLOGICAL MEANINGS OF BLSOM SEPARATION

Change in oligonucleotide composition is strongly influenced by changes in mononucleotide 
composition; the C→U mutation in SARS-CoV-2 caused by APOBEC is well known (Simmonds, 
2020). However, in a time-series study, we have found many changes that cannot be explained 
by mononucleotide changes (Iwasaki et al. 2021). If a mutation occurs that alters protein 
function and clearly increases infectivity or growth rate, the mutation will rapidly increase its 
frequency in the viral population and lead to the formation of a new clade, resulting in BLSOM 
separation. Notably, there are many synonymous mutations that have rapidly increased 
their frequencies, and detailed time-series analyses of their population frequency showed 
that some synonymous mutations appear not to be neutral (Wada et al. 2020). Concerning 
oligonucleotides such as pentanucleotides, some are expected to bind to host proteins or RNAs, 
and oligonucleotides adapting well to the host factors in human cells may differ from those 
adapting to natural hosts (e.g., bat). When functionally advantageous mutations including 
synonymous ones occur, they are thought to lead to the emergence of a new clade and BLSOM 
separation. At this time, we do not have a clear answer to the actual molecular mechanisms of 
the possible advantageous mutations, but we are analyzing them as separate studies (Wada 
et al. 2020; Ikemura et al. 2021). In a previous study, we assigned mutations that contribute 
to the separation on BLSOM; these diagnostic mutations including synonymous ones are found 
not only in the spike protein gene but also in many other genes (Ikemura et al. 2020 & 2021).

CONCLUSION AND PERSPECTICES
Based on the phylogenetic tree construction by multiple sequence alignments, GISAID has 
defined seven clades of SARS-CoV-2, giving a total of eight if clade O corresponding to others is 
included. However, these classifications are clearly inadequate to understand the current status 
of SARS-CoV-2 because this RNA virus evolves at a high speed. Using only the oligonucleotide 
composition of many genomic sequences, the unsupervised machine learning, BLSOM, could 
separate viral sequences according to not only clades but also subclusters within each clade. 
The separation (self-organization) that AI can accomplish without any hypothesis or model is 
thought to be a classification from a new perspective. BLSOM is equipped with various tools 
that allow us to visualize the analysis results in an easily understandable way and to visualize 
differences in the number of subcluster sequences among continents (Figure 2) and their time-
series changes (Figure 3), i.e., the distinct variations in the resulting subclusters depending on 
the region and the collection time. 

Herein, we focused on pentanucleotide composition, but similar separations were obtained for 
other lengths of oligonucleotides (Ikemura et al. 2020). BLSOM is an explanatory AI that can 
clarify combinatorial patterns of oligonucleotides that contribute to the separation according to 
clades and their subclusters. BLSOM is a powerful method for comprehensive characterization 
of the oligonucleotide composition in a massive number of SARS-CoV-2 genome sequences. 
Next, it will be important to know the relationship between the strains isolated in clades and 
their subclusters and the causative mutations. When it comes to oligonucleotides as long as 
15-mers, most are only present in one copy in the viral genome; therefore, changes in 15-mer 
sequences can be directly linked to mutations, and we have already started analysis from this 
perspective (Ikemura et al. 2020). The implementation of time-series oligonucleotide analysis 
of variants with rapidly expanding intra-population frequencies has enabled the identification 
of candidates for advantageous mutations for viral infection and growth in human cells (Wada, 
Wada & Ikemura 2020). 

Phylogenetic methods based on sequence alignment have been widely used in evolutionary 
studies (Hadfield et al. 2018; Kumar et al. 2018), and these methods are undoubtedly essential 
for studying the phylogenetic relationships between different viral species and variations in 
the same virus at the single-nucleotide level. In contrast, AI can analyze a massive number 
of SARS-CoV-2 sequences at once without difficulty, potentially reaching a level of one million 

https://doi.org/10.5334/dsj-2021-029
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in the near future. The AI method for oligonucleotide composition has become increasingly 
important as a complement to the phylogenetic tree construction method in preparing for 
future outbreaks of various infectious RNA viruses. 

ADDITIONAL FILES
The additional files for this article can be found as follows:

•	 Supplementary Figure S1. 2D display of the classification by clade and continent shown 
in Figure 2. Each subcluster territory is circled by a dotted line. In clades G, GH, GR, and 
GV, lattice points where less than 5 sequences exist are not shown. The sequences 
belonging to each territory defined here are used for the analysis in Figure 4. DOI: https://

doi.org/10.5334/dsj-2021-029.s1

•	 Supplementary Table S1. Sequence number of subdivided clusters in clade for each 
month by continent. DOI: https://doi.org/10.5334/dsj-2021-029.s2
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