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ABSTRACT
Meeting the conflicting goals of protecting and maintaining control over sensitive 
data while also allowing access by third parties constitutes a significant challenge. 
Secure data infrastructures support data visiting in a highly controlled and monitored 
environment which, if properly set-up and operated, provide high security guarantees 
through a combination of technical, legal and procedural mechanisms. To ease 
the process of deploying such a secure data infrastructure, we present a detailed 
documentation of the architecture and processes of such an infrastructure and 
provide a pre-configured reference implementation based entirely on open source 
software that can be flexibly configured to meet differing security requirements and 
deployment scenarios.

We combine mechanisms for data visiting on secured infrastructure components with 
optional components of data anonymization and fingerprinting, covered by extensive 
logging and monitoring functions and embedded in defined processes and contractual 
frameworks. The set-up is based upon the experience of operating such a secure 
infrastructure in the medical domain for almost ten years, addressing the emerging 
need to make such a solution available to a larger set of stakeholders. We show that 
our system significantly enhances data visiting, offers a higher level of data isolation 
and present our open source reference implementation thereof.
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1 INTRODUCTION
In an increasing number of settings, both researchers in academia as well as stakeholders in 
industry need to safeguard access to highly sensitive data, e.g. due to privacy requirements 
or commercial sensitivity of data, while still wanting to make it accessible to third parties 
for research purposes or to assist with specific analytical tasks. This challenge has become 
acute during the early days of the COVID-19 pandemic when evidence-based decision 
making required the analysis and sometimes integration of highly sensitive (due to privacy or 
commercial reasons) information such as health data, social science data, movement data 
from telecommunications operators, or supply-chain logistics data from the retail sector. But 
even outside this exceptional situation, academia–industry collaborations as well as industry-
to-industry cooperations frequently are hindered by the conflicting needs to keep the data 
secret that the other party should process or analyze. Homomorphic encryption, while ensuring 
that the data is kept hidden from the analyst, does not sufficiently support the exploratory and 
interactive types of analyses required in many settings, which frequently require an analyst to 
actually see the data and interpret instance-level characteristics and attribute semantics.

While data sharing is being proclaimed as the future in open science, many settings do not allow 
for such approaches be it due to privacy concerns, confidentiality agreements, or inherent risks 
to core business activities in case data were extracted and became available to e.g. companies. 
Data visiting, on the other hand, is an approach where data stays under the control of the 
owner and allows the consumers (e.g. analysts or machine learning algorithms) to come to the 
data to work with it. Closely monitoring the processes and interaction with data during these 
visits allows to put a certain level of safe-guards in place to prevent accidental data leakage or 
intentional data breaches. However, most research infrastructures provide data visiting support 
only on a very rudimentary level, sometimes even failing to prevent the (even unintended) 
export of parts of data via simple file transfer mechanisms when analysis results containing 
parts of the data are downloaded.

We define and document a system architecture and provide a modular pre-packaged 
configuration of components constituting the core of such a secure data infrastructure as 
reference implementation. Selecting only well-known and tested open source components 
allows us to minimize risks of data-theft while at the same time focusing on the main research 
challenge: design a secure system and identifying compulsory and optional components, as well 
as processes needed to operate it. Contractual obligations that need to be defined are discussed 
as part of the infrastructure set-up to complement the technical measures. The infrastructure 
is initially configured to run as a trusted third-party environment, with a subset of this 
configuration being suitable for deployment within a data owner’s environment. It is the result 
of a second iteration of the initial handcrafted solution using the experience gathered during 
the set-up and operation of a trusted third party data platform in the health sector operating 
as a joint initiative of our institutional IT services, a national research center on IT security and 
technical expertise of the people involved, findings of internal audits and user feedback. This 
paper presents the architecture of the resulting secure data infrastructure, discusses design 
decisions and touches upon the processes complementing the system set-up. Additionally, it 
presents a condensed summary of the risk factors involved and ideas for modular additions to 
enhance the level of security in the system. We do not cover general aspects of IT infrastructure 
security which obviously need to be considered in any IT infrastructure operation, but rather 
focus on avoiding data leakage occurring most likely from ignorance and accidental disclosure. 
We also would like to stress, that in terms of data leakage, e.g. unauthorized exfiltration of 
data from the system, the focus is less on a researcher maliciously trying to establish a covert 
channel to steal data, but rather to prevent accidental data loss, the circumvention of data 
pseudonymization safeguards via data linkage on its use for unauthorized purposes. This 
observation is also shared by other infrastructures providing research access to sensitive data, 
blaming a combination of enthusiasm and ignorance for attempts to bypass output checks or 
using data in unauthorized contexts (Dood, 2020).

The remainder of the paper is structured as follows: Sec. 2 describes approaches and similar 
infrastructures that enable secure data management, Sec.3 reviews the levels of control, the 
selected virtualization approach to create isolated environments and organizational measures 
before introducing the core infrastructure components. We present our controls for safeguarding 
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the infrastructure, Sec. 4 which consists of roles (e.g. Data Owner, Data Provider and Analyst) 
and controlled access, data segmentation, network segmentation, process automation and 
monitoring. The standard processes needed to transparently operate important tasks in the 
secure data infrastructure are presented in Sec. 5. We further discuss the limitations and 
possible weaknesses of our approach and give an overview of possible extensions in Sec. 6.

2 BACKGROUND
Specifying the technical and organizational boundaries of systems that enable governments, 
academia and businesses to use highly sensitive data is an ongoing field of research. The 
need to provide secured compute services in a cloud setting, with clear segmentation of 
the underlying network has been recognized for a long time (Hao et al., 2010). Using open 
source tools, techniques and procedures a secure container infrastructure can be created with 
moderate effort given the right guidance. We elaborate on necessary principles for trusted 
data infrastructures in Sec. 2.1 and introduce similar data visiting infrastructures in Sec. 2.2. In 
Sec. 2.3, we align these with secure enclaves.

2.1 PRINCIPLES FOR TRUSTED DATA INFRASTRUCTURES

Practical guidelines (Akula, 2019) ease the process of constructing a secure environment by 
addressing a wide range of security dimensions with and — as one of the key contributions 
of this paper — reference implementations lowering the entrance barrier for providing secure 
compute platform environments. There are many data management solutions that address 
effective decision making in the context of preventing unintended disclosure of sensitive 
information. The “fives safes” dimensions (Desai, Ritchie, and Welpton, 2016) maximize 
the usage of detailed public records while at the same time protecting personal rights of 
individuals. Splitting decisions into five dimensions allows a data management solution to 
protect the overall confidentiality but gives enough flexibility to tailor some specific dimensions 
to stronger security than others. In the following, we give a short overview on the dimensions 
since we address them through technical enforcement and organizational processes in the 
main body (c.f. Sec. 5) of this paper: (i) safe projects address management decisions regarding 
appropriateness of the usage of the data through auditability and review processes, (ii) safe 
people identifies individuals that access the sensitive data and require them to sign legally 
binding terms of use, (iii) safe data ensures appropriate data de-identification and access 
capabilities with respect to the research questions formulated, (iv) safe settings addresses 
the necessity of security and transparency to achieve trust with the public and data owners, 
(v) safe outputs ensures only approved, aggregated research results can be exported out of 
the system.

Taking this into consideration, the UK Health Data Research Alliance describes “a strategy 
to build public trust and meet changing health data science needs” in their green paper on 
trusted research environments (TREs) (United Kingdom Health Data Research Alliance, 2020). 
The original requirement for safe setting is extended to address outsourcing of computing 
infrastructure to other parties and maintaining inaccessibility to the sensitive data by these. 
The environment that holds the sensitive data must implement a barrier to the outside world. 
Further, they extend the original framework by allowing a safe return of the results produced 
from the processing of data back into the trusted research environment through a mapping 
mechanism. It must ensure that in case of de-identified subsets of data, the re-identification 
always perfectly maps back to the individuals where the data originated from not to poison the 
original data set, but to enhance the data set with e.g. research artifacts.

2.2 DATA VISITING INFRASTRUCTURES

A number of discipline-specific and national data infrastructures have emerged during the past 
few years, that implement and serve as inspirations and best-practice guidelines for the concepts 
listed above. Due to data leakage concerns, research data centers may enable researchers 
local data access only. In a connected, global community of researchers and practitioners this 
in almost all cases, results in unacceptable data visiting conditions for sensitive data.
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The Kadi4Mat research data infrastructure (Brandt et al., 2021) provides tools and workflows 
as a service for analysts in material science. It uses workflows that the analyst creates to 
provide an automated data processing pipeline covering analysis, visualization or transport 
within one of multiple process engines. The concept of a process engine is described as an 
executor for a specific task on behalf of the user within the workflow. This allows the analyst to 
have a reproducible result and creates metadata along the way that is collected and recorded. 
Their web-based application follows a standard client-server architecture and a PostgreSQL1 
database to make the metadata available in their repository. Contrary to the system presented, 
our approach uses temporary virtual machines that are isolated from each other, as well as 
an air-gapped data node holding sensitive data, also improving the usability of the data since 
researchers are provided with instant feedback instead of job submission-systems. To the best 
of our knowledge, we were not able to determine how Kadi4Mat protects sensitive data in the 
infrastructure.

The RemoteNEPS (Skopek, Koberg, and Blossfeld, 2016) system allows remote data access 
through web technology in a secure environment. The National Education Panel Study (NEPS) 
hosts a secure data infrastructure capable of handling 50 user simultaneously at a machine 
cluster consisting of 72 physical cores and 1.344 TB random access memory. Their technical 
approach is to use a web browser with Java2 plugin as client software to connect with the 
secure data infrastructure through a remote desktop server and allows no Internet access 
within the desktop session (Barkow et al., 2011). They extend conventional approaches like 
remote execution or job-submission systems e.g. Kadi4Mat that have input- and possibly 
output queues, since the output is immediately present on the screen of the user. Their 
infrastructure uses Active Directory Services3 and biometric key-stroke authentication for each 
new login attempt. The analyst can use commercial data science- and text processing tools, 
as well as editors in the Windows Desktop4 environment. During publication, their system was 
in production for four years and served more than 200 users. Our approach similarly provides 
the analyst with a remote environment and data science tools, but only considers open-source 
operating systems and -software with intent to make it available to as many institutions as 
possible, without licensing processes. After configuration, our infrastructure also supports 
commercial software. Also our approach allows approved connections to the open Internet to 
e.g. allow usage of proprietary software that depends on license server connections.

The DEXHELPP infrastructure (Popper et al., 2017) has been operational in Austria for almost 10 
years. To facilitate research, it creates a secure and controlled environment where data owners 
can deposit their data, after which analysts can perform their analysis and experiments within 
that environment without the need to transfer the data outside of the system. Data providers 
can specify fine-grained access rights to individuals or groups of analysts, to entire data sets 
or just specific subsets thereof, e.g. limiting the number of records, or excluding specific details 
of records. The access of analysts to these sources is accurately recorded, which allows for 
auditing and inspection of the intended usage of the data. One important aspect of the system 
is the trade-off between the controlled environment and the choice and offer of modeling and 
programming tools available to the analysts. DEXHELPP tackles this by providing the analysts 
with a wealth of commonly used tools, the requirements for which were elicited by observing 
current practices. Further, the server environment offers a fast computing environment, with 
special hardware such as graphical computing (GPU) available on demand and is also a suitable 
environment (on a dedicated research server where the data is held in an encrypted vault) 
to merge and link data sets from different sources, which otherwise would not be released. 
Compared to RemoteNEPS and Kadi4Mat, it offers an open source infrastructure with isolated 
desktop where the analyst authenticate against the researcher environment with a time-based 
one-time password instead of a biometric method.

Similar infrastructures have recently been set-up in different countries particular in the health 
sector, such as e.g. SAIL Databank (Jones et al., 2014), ePouta (Palmgren et al., 2019), French 

1 “PostgreSQL”. [Online]. URL: https://www.postgresql.org/, accessed 2021-12-22.

2 “Java”. [Online]. URL: https://www.java.com/, accessed: 2021-12-22.

3 “Active Directory Services”. [Online]. URL: https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-server-2008-R2-and-2008/dd578336(v=ws.10), accessed 2021-08-02.

4 “Windows OS”. [Online]. URL: https://www.microsoft.com/en-us/windows, accessed 2021-08-03.
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Health Data Hub (Cuggia and Combes, 2019), OpenSAFELY (Williamson et al., 2020), etc. The 
infrastructures referenced provide a system design on an abstract level, offering little technical 
guidance on the components or configuration. Inspired by these and similar models we present 
the Open Source Secure Data Infrastructure OSSDIP (Weise and Rauber, 2021), specifically re-using 
experience gained from DEXHELPP as well as personal communication which several other operators 
of secure infrastructures. We extend DEXHELPP by distributing core infrastructure components 
across multiple nodes (c.f. Sec. 3.4) in aim to provide well-defined interfaces and multiple layers 
of security (c.f. Sec. 3). It follows the same core infrastructure set-up that we document at a fine 
granular level of detail to allow other institutions to set up a copy within their own premises. It is 
designed to be able to be hosted by an external third party provider and thus needs to document 
and establish trust both towards the data owner as well as the analysts wanting to work with the 
data. Frequently, it will be hosted by the data owner (although it can also be hosted externally), 
thus collapsing those two roles and easing/eliminating certain process steps.

In the remainder of this paper we only consider the case where the data owner is the infrastructure 
carrier. Experience shows that the perceived technical burden of getting started with such a 
technical infrastructure in institutions is often too large to embark on the mission to establish a 
secured data visiting infrastructure. As a consequence of this, a lot of sensitive data that cannot 
be shared with research has to be kept inaccessible for large user communities or can only be 
provided in anonymized and/or highly abstracted levels of aggregation, also reducing its value 
for research. Presenting a sound system architecture together with straightforward processes 
and a reference implementation is needed that can be easily deployed for evaluation purposes, 
as presented in this paper, should ease the adoption of data visiting infrastructures and thus 
make research data more widely accessible while allowing the data owner to retain full control 
over their data. Our contribution reduces the technical burden by providing institutions with a 
automatized deployment of a reference implementation that requires little resources for proof-
of-concept deployments, but can be scaled to production deployments through configuration 
files before deployment.

2.3 SECURE ENCLAVES

Secure enclaves are infrastructures built for secure and confidential computing and follow the 
principle of a trusted computing base (Kostiainen, Dhar, and Capkun, 2020), where the extent 
to which software and hardware that needs to be trusted is reduced to a minimum level for 
a particular task. Oftentimes users can run applications and work with sensitive data while 
ensuring higher security and privacy degrees. In the context of academic research computing 
(Peisert, 2021), a secure enclave describes a secure computing infrastructure to tackle the 
problem of data confidentiality through technical, administrative and procedural solutions. 
Campus secure computing enclave systems are either bought as strategic investment or are 
the result of in-house efforts to provide such an environment.

The principle of a trusted computing base can also be fulfilled by hardware-based trusted 
execution environments (TEEs) that is a hardware element implemented in e.g. the central 
processing unit of chip manufacturers.5,6,7 Since these hardware-based TEEs might increase 
the initial impediment to start using a secure enclave, efforts towards providing hardware-
independent implementations thereof are coming forward. Through using simple abstractions 
(physical memory protection, security monitor, etc.) provided by the hardware while also 
allowing platform-specific features, Keystone (Lee et al., 2020) can be a open-source secure 
enclave that allows customization from the hardware manufacturer, hardware operator and 
the enclave programmer. The Open Enclave SDK8 aims for a similar goal.

In Table 1 we give an overview on common features of secure enclaves (Peisert, 2021) to later 
align them with our own methodology. Features on the physical level consist of dedicated 
hardware co-processors or system-wide bus-address filters, to separate secure from memory 

5 “Arm TrustZone Technology”. [Online]. URL: https://developer.arm.com/ip-products/security-ip/trustzone, 
accessed 2021-12-22.

6 “Intel Software Guard Extensions”. [Online]. URL: https://www.intel.com/content/www/us/en/architecture-
and-technology/software-guard-extensions.html, accessed 2021-12-22.

7 “AMD Secure Encrypted Virtualization”. [Online] URL: https://developer.amd.com/sev/, accessed 2021-12-22.

8 “Open Enclave SDK”. [Online]. URL: https://openenclave.io/sdk/, accessed 2021-12-22.
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partitions and provide secure processors with isolated memory containers for applications. 
A simple mechanism on this level can also be a human-operated “airlock” that requires two 
trusted operators to connect a privileged storage to the analyst machine. On the network 
level, a secure enclave might support virtual private networking (VPN) for connection to 
the infrastructure and encrypted data transfer through secure copy or other file transfer 
protocols. At a workstation level, a secure enclave might allow users to connect to the 
execution environment via remote desktop. On this level further control mechanisms can be 
deployed, such as recording and storing every user action, managing privileges with access 
control models and disabling cut/copy/paste operations from the remote machine to the local 
machine to prevent data flowing off through a tunnel.

Secure enclaves may provide encryption models for data at rest on the data level. Major 
database management systems focus on securing data at rest with homomorphic encryption. 
This approach still leaves room for the adversary to physically access the data, which is why 
encryption for data in use in cloud environments has also been proposed (Sidorov and Ng, 
2015). Secure enclaves can provide features at data level by adding data de-identification 
techniques to remove the parts of the data that are deemed most sensitive trough 
anonymization, pseudonymization and/or differential privacy (Garfinkel et al., 2015). While the 
former two methods do not change the aggregate of the data set, the latter one does by 
releasing statistical information about the data. How well-de-identified the data actually is 
or how hard it is for an adversary to re-identify certain records can be measured by using the 
k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala et al., 2007) and t-closeness (Li, Li, 
and Venkatasubramanian, 2007) criteria.

Having these features in mind, we not aim for protection in the physical level in OSSDIP, since 
we assume a trusted hypervisor and execution environment to be present on each of the 
nodes either through technical-, organizational- or legal obligations between the organization 
providing the resources and the organization operating the infrastructure. Network level 
features are also not the main contribution of OSSDIP, although the system is compromised of 
best-practice software that provides VPN, time-based two-factor authentication and encrypted 
data transfer. From the workstation level onwards, our system differs from secure enclaves like 
Keystone since OSSDIP focuses on preventing accidential data loss through ignorance rather 
than an malicious insider.

3 SYSTEM ARCHITECTURE
We give an overview of the architecture in Sec. 3.1, the prerequisites in Sec. 3.2 and introduce 
the concept of isolated virtual machines in Sec. 3.3 that support organizational measures 
presented in Sec. 3.4.

Physical Level Dedicated Hardware co-Processors

System-wide Bus-Address Filters

Trusted Execution Environments

“Airlocks” with Two-Person Rules

Network Level Virtual Private Networking

Time-based One-time Passwords

Encrypted Data Transfer

Workstation Level Remote Desktop

Access Control

Data Level Encryption (at rest)

Homomorphic Encryption

Pseudonymization

Anonymization

Differential Privacy
Table 1 Secure Enclave 
Features.

https://doi.org/10.5334/dsj-2022-004


7Weise et al.  
Data Science Journal  
DOI: 10.5334/dsj-2022-004

3.1 OVERVIEW

Data breaches are a key security issue in modern computing and have a multitude of root causes 
(Mousa, Karabatak, and Mustafa, 2020). We aim at ensuring ongoing confidentiality through 
technical and organizational measures and establish integrity with our five controls (see Sec. 
4). Availability is provided through deploying the system on commodity server hardware using 
standard tools to establish a secure connection from the open Internet, and resilience through 
using only best-practice open source software.

A secure system needs to deploy security controls that target every technical and organizational 
aspect specific to the setting of secured data visiting. We address the security of processing 
sensitive data by architectural design and automated decision making on behalf of stakeholders. 
The provider of the secure data infrastructure in legal terms acts as data processor. The actual 
ingress of sensitive data is initiated by the data owner (see Sec. 4.1 for detailed role definitions) 
as is the egress. Our secure data infrastructure stores the sensitive data in a data node that 
has a strict firewall barrier around it. Only process-approved connections to selected Virtual 
Machines9 (VMs) for data import or to provide an isolated copy of the data, as well as for 
maintenance and monitoring, are allowed to pass this barrier.

The overall concept is centered around the principle of never providing access to the data node 
where all data is being held. For each individual analysis request, the specific subset of the data 
required is extracted from the central data store and copied onto a dedicated compute VM 
(Analyst-VM, through the rest of the paper we capitalize core infrastructure nodes c.f. Sec. 3.4) 
together with the tools required to perform the analysis. Access to this Analyst-VM is granted 
to the (single) analyst working on the task at hand – however, never directly, but only via a 
dedicated Remote Desktop-VM to introduce a media break and avoid any data flowing off via 
e.g. a tunnel. Thus, an analyst can establish a remote desktop connection to a dedicated VM 
from which solely a secure shell connection (SSH) to the corresponding Analyst-VM can be 
established, holding a copy of only the subset of data (possibly finger-printed and aggregated) 
as well as the tools required for addressing the task at hand. Export of any result files (trained 
models, figures, charts) is possible only via a dedicated temporary Data Owner-VM via which 
the approval of data owner is obtained. An overview of this architecture is depicted in Figure 1 
and described in further detail below. These Analyst-, Remote Desktop- and Data Owner-VMs 
are being destroyed after a specific transfer or analysis task is completed.

3.2 ORGANIZATIONAL MEASURES

Similar to the holistic approach to TREs (United Kingdom Health Data Research Alliance, 2020) 
introduced earlier, we argue that only technical enforcement is not enough to keep sensitive 
data confidential for a multitude of reasons: (i) establishing awareness that certain operations 
require more conscious decisions than others and may have unintended consequences 
attached to it; (ii) accountability which enables a transparent communication of important 
processes in the system and making actors of the processes responsible for certain steps of 
the processes; (iii) legally binding terms of use to allow the processing of personal information, 
non-disclosure agreements, data access agreement, etc. Since we use well-known open source 

9 We refer to the various computational nodes as virtual machines as this is the way these are provided in 
our reference implementation to allow easy deployment of test set-ups. For real life deployment, these will 
frequently be deployed an individual physical machines to enable proper air-gapping of central nodes, allow the 
assignment of the Administrator role to different persons to avoid privilege concentration.

Figure 1 The multiple security 
layers in our reference 
implementation. Components 
in golden color contain 
sensitive data anytime, red 
bars are restricted firewall 
barriers. Dotted boxes denote 
physical servers on which 
nodes can be deployed or 
virtualized (the VPN Node 
and Gate Node can share a 
physical server).

VPN Client Internet VPN VPN Node

Key Node

Gate Node Provider
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Monitoring
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Data
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software and provide the Analyst with standard data science tools, we improve the status-quo 
since little to no additional training should be required to use OSSDIP.

3.3 PREREQUISITES

Below, we provide an in-depth description of the various components of the OSSDIP infrastructure 
and our reference implementation. This implementation is available as supplemental material 
at the end of this paper and optimized for easy deployment. Specifically, all OSSDIP components 
can be deployed almost fully automatically using Ansible10 playbooks. To achieve this, all nodes 
are created as virtual machines on at least two hosts in our reference implementation. For 
production deployments, at least three dedicated physical servers (Data Node, Monitoring 
Node and a node containing the rest) should be used. It demonstrates the design decisions 
required to determine in which way such a data visiting set-up could be provided. A detailed 
description of the set-up process is provided in Sec. 4.4.

3.4 CORE INFRASTRUCTURE COMPONENTS

In our reference implementation we use a single Virtualization Host that provides the necessary 
resources for the virtualized components, specifically the five core infrastructure nodes plus 
dedicated, temporary VMs for data delivery and for checking safe returns or result exports by 
data owners, and both a Remote Desktop-VM and Analyst-VM combination temporarily per 
task per analyst.

VPN Node is the endpoint for the analyst and data owner to establish a connection 
to the secure data infrastructure. We run a standard OpenVPN Access Server11 
implementation with the recommended AES-256-CBC cipher without compression on 
UDP port 1194, that is installed automatically by the set-up playbook.

Gate Node is the firewall that manages the traffic between the networks in the 
infrastructure. We use the pre-installed firewalld software of Rocky Linux12 for this 
task. It allows to filter packets based on allow/deny chains that manage the traffic 
from analyst/data owner to the respective subnets.

Data Node is the central storage that holds sensitive data and can be isolated to a 
level that only a system administrator is able to access the node for maintenance, 
but not to make changes to the database engine running on it (c.f. Sec. 4.1). Our 
reference implementation runs a MariaDB server in a virtual machine (Data-VM) that 
implements the Research Data Alliance (RDA) recommendations for dynamic data 
citation via temporal tables, c.f. Sec. 4.2. In a production deployment, however, this 
node should be a dedicated physical machine to not expose the sensitive data to a 
potentially compromised hypervisor.

Identity Node is a component that offers a directory service to manage Data 
Owner-VMs and Analyst-VMs. We use OpenLDAP13 for this task. Internally, it keeps 
track of all user credentials to access the VPN Node and contact possibilities (e.g. 
e-mail, telephone number, full name), as well as the metadata that, depending on 
the configuration, can be publicly exposed via an external node to fulfill transparency 
requirements and support the FAIR (Findable, Accessible, Interoperable, Reusable) 
principles for sensitive/closed data (currently under development).

Monitoring Node runs the monitoring endpoint that stores all events that are 
occurring in the secure data infrastructure. All monitoring activity is collected here 
and saved in audit trails. This component should (ideally) operate using a hardware-
protected write-once storage system, and have a separated access control, but is 
virtualized in the reference implementation to provide a self-contained starting point 

10 “Ansible is Simple IT Automation”. [Online]. URL: https://www.ansible.com/, accessed 2021-07-27.

11 “Change encryption cipher in Access Server”. [Online]. URL: https://openvpn.net/vpn-server-resources/
change-encryption-cipher-in-access-server/, accessed 2021-06-10.

12 “Rocky Linux”. [Online]. URL: https://rockylinux.org/, accessed 2021-12-13.

13 “OpenLDAP”. [Online]. URL: https://www.openldap.org/, accessed 2021-12-13.
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using append-only logs.14 Two separate nodes are used for monitoring to allow the 
Data Node to remain air-gapped (where the Data Monitoring Node has no network 
connections except to the Data Node).

Data Owner-VMs are temporary VMs created for the submission of data (ingress) by 
a data owner into the infrastructure. It is a minimalistic VM supporting only secure 
copy (SCP) upload of data. Upon completion of the upload the data is shifted to the 
Data Node by the system administrator after which this VM can be deleted. It is also 
created for being used for safe returns (in terms of TREs (United Kingdom Health Data 
Research Alliance, 2020) and data- or result exports as both processes may require 
clearing from the data owner.

Analyst-VMs are temporary VMs created individually for each analysis and 
data processing task. Upon creation with a 0ed storage region (in the reference 
implementation we format the encrypted virtual partitions with 0s as first step 
in the set-up when creating the file system) they are equipped with a copy of the 
data subset and the tools required by the Analyst (c.f. Figure 2). Connections are 
solely possible from the corresponding Remote Desktop-VM and to verified license 
servers when required by specific tools, as well as for transferring result data to the 
associated Data Owner-VM for safe return and export. This node is the place where 
the data visiting takes place.

Remote Desktop-VMs are temporary VMs created for a selected Analyst-VM – these 
only occur in pairs. We use TigerVNC15 as software implementation that runs inside 
the Remote Desktop-VM as a process, providing windowing system capabilities for 
using graphical tools at the Analyst-VM, configured to provide only video connectivity 
and without any cut-and-paste capability offered by Xvnc. The Remote Desktop-VMs 
sends all interactions and the video stream to the Monitoring Node.

Key Node is a separated on a dedicated physical server that holds the password to 
the encryption key of the storage of each node.

4 SECURE DATA INFRASTRUCTURE CONTROLS
This section describes the high-level configuration of the technical implementation of our 
secure data infrastructure, the processes required to operate on the secure data infrastructure 
are explained in Sec. 5. To prevent data leakage, our approach implements multiple layers that 

14 In the reference implementation we use rsyslog that is configured to keep the log append-only, except for 

log rotation where this restriction is quickly disabled and re-enabled. Since the Data Monitoring Node can only be 

accessed via SSH in our implementation, we configure the SSH service to set the CAP_LINUX_IMMUTABLE flag, so 

not even root user/process can modify these read-only/append-only attributes.

15 “TigerVNC”. [Online]. URL: https://tigervnc.org/, accessed 2021-07-27.

Figure 2 The Analyst can 
visit sensitive data using 
e.g. RStudio through the 
windowing system from the 
Remote Desktop-VM. The 
screenshot contains sample 
data for visualization purposes.
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secure the control of the data from the physical location of the server to the pixel displayed on 
the screen in five controls. Since analysts need to disclose how they are going to use the data 
through an approval process, the data owner may have interest in checking for the truthfulness 
of their statement. In the following we explain the five controls (Roles and Controlled Access, 
Data Segmentation, Network Segmentation, Automation, Monitoring) of our approach that 
protect the data.

4.1 ROLES AND CONTROLLED ACCESS

Physical security that restricts access to the server hardware is the first control to protect the 
sensitive data in the infrastructure, c.f. (Knapp, Denney, and Barner, 2011). We recommend to 
place the hardware needed into a dedicated locked server rack where only a designated and 
certified operator can open the lock. Following the four eye principle, a key card for the server 
room is needed that is held solely by another operator.

Our method uses the role-based access control concept (Ferraiolo and Kuhn, 1992) where 
individuals are assigned a set of roles that allows them to access previously defined components 
in the secure data infrastructure. To prevent privilege escalation attacks (Provos, Friedl, and 
Honeyman, 2003), we equip each role only with a bare minimum of privileges on a need-to-
know principle for data access. We argue to limit the number of roles to only five in order to 
have a clear distinction of requirements and interests to interact with the system.

Data Owner has a strong interest in providing an identified expert access to the data 
but wants to retain control of the data and specifically reduce the risk of data leakage 
to an acceptable level. Our approach provides temporary and isolated Data Owner-
VMs that allow import of structured data to the database of the Data Node after 
which they are destroyed and consigning the Data Owner full control over who the 
data is provided to. It furthermore has access to comprehensive logging information 
providing a full audit trail (all interactions with their data within the infrastructure 
from data import, via any provisioning steps to data deletion).

Analyst has a clear understanding on what research questions should be answered 
with it and what data is required. This role can be assigned to experts that need to 
analyze or process the data, but where sharing the data is not feasible. With the 
permission of the Data Owner, the Analyst is able to use an according subset of 
the data in isolated VM. Access is only granted for a limited time period with the 
possibility to extend it following request and approval processes via the Data Owner. 
The Analyst is granted access only to own corresponding Analyst-VMs created 
explicitly for the approved set of analysis or processing goals.

Data Provider is processing the data on behalf of the Data Owner. Entities equipped 
with this role manage the services and takes care of all data operations (e.g. 
creating the respective isolated VMs for Data Owner- and Analyst, monitoring user 
interactions, handle the legal contracts required). In most of the cases, the Data 
Owner itself decides to provide the services, but can outsource the operation of the 
infrastructure to a different Carrier role not covered in this paper.

Database Administrator is responsible for maintaining the Data Node. The Database 
Administrator is nominated by the provider organization and is mutually exclusive 
with the System Administrator. This exclusivity is required to not enable a change in 
the central Data Node and subsequently manipulate the logs in the Monitoring Node. 
This role also has to maintain the Key Node that stores the passphrase for decrypting 
the encryption key for the node disks for similar reasons.

System Administrator maintains the secure data infrastructure environment, 
except for the central Data Node. This role also manages the platform where the 
infrastructure is hosted i.e. OpenStack16 for our reference implementation. This role 
may be further sub-divided to assign, e.g. two different individuals, the respective role 
for the Data Node and the Data Monitoring Node.

16 “Open Source Cloud Computing Infrastructure”. [Online]. URL: https://www.openstack.org/, accessed  
2021-07-27.
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Data Owner- and Analyst-VMs, as well as the Data Node, require a two-factor authentication 
from the role that is using them. Our reference implementation automatically configures 
them to require a time-based one-time password provided by Google Authenticator17 for each 
login. To better understand the roles defined, we visualized their interaction with each other 
in Figure 3. An important interaction between roles is e.g. the Data Provider equipping the 
Analyst with VM credentials and the tools needed to analyze the data subset on the Analyst-
VM through the Remote Desktop-VM.

4.2 DATA SEGMENTATION

To achieve a clear segmentation of data streams for different roles, we implement a control 
that provides strongly restricted, isolated (virtual) machines for any entity external to the 
organization. The control provides a query store documenting all queries issued against the 
database, including execution timestamps, result set hashes and other metadata to ensure the 
query results can be reproduced at any time in the future even if the data in the respective tables 
should change. This will allow the data used to be cited externally using a persistent identifier 
e.g. DOI (currently relying on an internal mechanism) that, depending on settings, can be set 
to re-direct to a respective landing page providing externally visible metadata information on 
the data subset and e.g. contact information for data access requests, supporting FAIRness for 
sensitive data. Our reference implementation uses a PostgreSQL database, implementing time-
stamping and versioning via temporal tables (Kulkarni and Michels, 2012).

All connections to this central Data Node are one-way oriented following the recommendation 
on safe data and safe return for TREs (United Kingdom Health Data Research Alliance, 2020). 
These one-way oriented connections are implemented through the use of the low-level 
netfilter kernel module and custom chains. The Analyst can submit a request for data egress 
out of the infrastructure. Our approach is that the Analyst places the data to be egressed in a 
clearly labeled export folder and the System Administrator then transfers the data to the Data 
Owner-VM. In case of approval, the data then can be re-inserted into the central Data Node 
or exported by the Data Owner who subsequently can make it available to anybody else. This 
constitutes an additional control of protecting the sensitive data and results.

For Analyst-VMs additional policies such as prohibition to install barcode-generating packages 
are implemented in the secure data infrastructure. This massive overhead of processes running 
in isolated VMs ultimately only allows for visual access to the data to the best of our knowledge. 
An adversary still is able to take screenshots of e.g. paginated views of data or using code to 
display encoded representation of data in barcodes. By having a copy of all code being deployed 
on VM set-up and recording both the Remote Desktop-VM video stream as well as Analyst-VM 
activities on the Monitoring Node, can be traced activities to detect unusual behavior in task 
processing. This is complemented by passive security measures such as data fingerprints being 

17 “Google Authenticator”. [Online]. URL: https://github.com/google/google-authenticator, accessed 2021-07-26.

Figure 3 Social architecture 
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embedded upon VM deployment. For future work, we want to implement real-time screen 
watermarking (Piec and Rauber, 2014) to additionally be able to follow and trace screenshots 
to the adversary in case of data leakage.

4.3 NETWORK SEGMENTATION

Complementing the control in Sec. 4.2, we separate the central Data Node from the Data Owner- 
and Analyst-VMs by placing them into their own network subnets as additional security control. 
The standard netfilter module of the Linux kernel is sufficient for our reference implementation 
and is used on the Virtualization Host, the Gate Node and the VPN Node. To make administration 
straightforward and as failsafe as possible with the tools present, we create a new VPN Node 
inside the infrastructure instead of offing their service at the Virtualization Host. Note that, 
contrary to the Data Owner-VM, an Analyst-VM does not allow direct external secure shell 
interaction. For Analyst-VMs the Analyst first connects to the assigned Remote Desktop-VM 
which then provides secure shell interaction with the respective Analyst-VM.

4.4 AUTOMATION

An automation engine like Ansible allows infrastructure operators to control how repetitive 
processes are executed on the system by using configuration files and scripts. Capabilities 
to install, configure, update and uninstall parts of the system are supported by the engine 
and provide a valuable tool to administrators that can customize the system by changing e.g. 
environment variables only.

The reference implementation of our secure data infrastructure comes pre-configured, with 
a step-by-step guide to make the initial deployment on an empty host as straightforward as 
possible for provider organizations. After installation of the operating system with virtualization 
technology, only the version control system Git18 and Ansible need to be present as necessary 
automation dependencies. The set-up starts with executing the playbook (text files with sets 
of instructions that provide transparent user management, networking configuration). We also 
use it for safe creation of encryption keys with Linux unified key setup and starting the core 
infrastructure components (cf. Sec. 3.4). at the Virtualization Host. This allows the automated 
setup through Ansible within 50–60 minutes using our step-by-step guide.

The regular deployment and destruction of Data Owner- or Analyst-VMs could be vulnerable to 
human error. That is why we automated these tasks to ensure that managing virtual machines 
follows a tested standard process. Processes without much human intervention enable a 
transparent operation of the secure data infrastructure for the Data Provider that especially 
enables a safe operation from the set-up on-wards.

4.5 MONITORING

Every operation performed on the isolated Data Owner- and Analyst-VMs is monitored closely 
using explicit contractual agreements between the respective role and the Data Owner. The 
Monitoring Node is configured to only append to log files and does not allow modifications 
by the System Administrator. We noticed early on, that only system-level logging alone is 
not sufficient for later investigation. Although VMs are able to send the events to the central 
Monitoring Node within the secure data infrastructure, it does not provide enough information 
to comprehend the performed operations since it only captures the infrastructure’s actions.

Therefore, in order to capture the human interaction with the infrastructure, the Analyst must 
agree to monitoring the shell and remote desktop interaction. This approach allows Data 
Owners to automatically analyze certain interaction patterns. If an Analyst, for example, tries 
to extract sensitive data using self-written scripts by displaying scan-able barcodes, this can be 
detected by scanning the input from the keyboard stream for known barcode names via the 
logged shell history or checking the recorded video stream of the Remote Desktop-VM.

Since both roles, the Data Owner and the Analyst need to trust the infrastructure as a meeting 
point for accessing sensitive data, we monitor the Data Provider, Database- and System 
Administrator roles too. All interactions with the Data Node are logged to the Data Monitoring 

18 “Git”. [Online]. URL: https://git-scm.com/, accessed 2021-07-31.
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Node,19 ideally via a dedicated (non-virtualized) server equipped with write-once storage 
technology.

5 SECURE DATA PROCESSES
In this section we present the processes that should be transparently communicated with all 
involved roles to raise awareness of the interactions needed to execute sensitive operations. It 
covers the basic interactions and omits well-studied standard processes like user identification.

5.1 DATA INGRESS

Whenever a Data Owner wants to import data into the secure data infrastructure, the data ingress 
process is started. Initially, the Data Owner must sign an agreement on data delivery (“data 
processing agreement”) and provide meta data of the data set, specifically: (i) list of attributes with 
respective description and primary key; (ii) number of records e.g. rows; (iii) disclosure of format. 
Currently only comma-separated values are supported in the reference implementation, providing 
the separator qualifier, null value encoding, boolean value encoding, date encoding and; (iv) short 
description of the data. The Data Owner needs to disclose personal information like: (i) first- and 
lastname (ii) organization (iii) e-mail address and (iv) mobile phone number to send messages at 
the end of the process to (or receive a call). The Data Owner subsequently receives an account (or 
re-uses an existing). This step requires manual interaction (will usually be automated using trusted 
authentication services) and takes a few minutes upon approval before the Data Owner can access 
the Data Owner-VM. As seen in Figure 4, the secure data infrastructure then automatically creates 
a new isolated Data Owner-VM, updates the firewall rules to grant access to this machine for the 
Data Owner and sends the credentials to access it. The Data Owner can transfer the sensitive data 
via a double-encrypted channel (VPN and SSH). After confirmation that the data is completely 
sent (or after a pre-defined timeout) the infrastructure locks the virtual machine, transfers the 
data from it and securely destroys it by over-writing the strorage with zeroes. The Data Owner 
then is notified using two different channels that the transfer was successful.

5.2 DATA ACCESS

To access the data, an Analyst follows the processes depicted in Figure 5, starting by sending a 
request to the Data Owner containing: (i) personal data that allows identification of the Analyst 
(e.g. first and last name), (ii) required data (usually a sub set of the available data), and (iii) 
required tools to analyze the data and optionally prepare the data in a way that it can be 
re-imported into the Data Node (safe return in terms of TREs (United Kingdom Health Data 
Research Alliance, 2020)) (iv) task and research questions that should be answered with the 
required data.

After (manual) check of the identity, the Data Owner and additional committees such as boards, 
review the research questions and grant or reject permission to use the data. When granted, 
the “data access agreement” between Data Owner and Analyst must be accepted including 
the conditions of use: (i) prohibition of data download (ii) prohibition of de-anonymization 
(iii) non-disclosure agreement and (iv) agreement to extensive monitoring. Upon acceptance, a 

19 This monitoring has to be performed by a dedicated monitoring node to allow the Database Node to remain 
air-gapped (disconnected) from the rest of the infrastructure most of the time, except for short time windows 
when data is transferred to a new Analyst-VM from a Data Owner-VM.

Figure 4 To import data into 
the infrastructure, the Data 
Owner must follow the Data 
Ingress process (steps that 
are relevant only when the 
Data Provider is different from 
the Data Owner are colored 
gray and marked with an 
asterisk *). We color the Data 
Node golden, since it contains 
sensitive data.
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request for an account is issued providing the required information (e-mail address and mobile 
phone number to send messages).

Subsequently, an Analyst-VM is automatically created with a pre-specified life-time (expiry 
date) according to the envisaged project duration (with explicit prolongation confirmation 
required). The requested subset of data at specific aggregation level (potentially adding a 
fingerprint and/or applying anonymization at specified levels as requested by the Data Owner) 
is extracted from the Data Node and pushed onto the Analyst-VM together with the requested 
(and cleared) set of tools for analysis. As the Data Node implements the RDA recommendations 
for dynamic data citation (Rauber et al., 2015, 2016) recommendations on dynamic data 
citation, the respective query used to select the subset of data is stored in a query-store with 
the query execution timestamp and some associated metadata described in (Weise et al., 
2021). If the respective subset has to be re-created at a later point in time, the time-stamped 
query can be re-executed against the time-stamped and versioned database to extract the 
exact same subset of data, ensuring full reproducibility.

Furthermore, a dedicated Remote Desktop-VM is created to provide the sole access to the 
Analyst-VM. Also, the firewall configurations are adapted to allow access by the specified user 
(Analyst) to the respective Remote Desktop-VM. The Analyst then can analyze the data as long 
as the time-out is not reached. Additionally, the Data Owner has the right to lock access (via 
locking the user account of the Analyst to the Analyst-VM) any time to protect the data, and to 
inspect all activity happening on the Analyst-VM by inspecting its logs.

At the end of the analysis, the Analyst may wish to re-import some data back to the Data Node 
or to export certain result files to an external machine. This is possible after approval by the 
Data Owner. Afterwards, Analyst-VM and Remote Desktop-VM are destroyed, the respective 
firewall entries are removed, and the account credentials disabled.

6 CONCLUSIONS AND FUTURE WORK
The current state of the secure data infrastructure allows a Data Owner to invite experts (e.g. 
Analyst) to visit sensitive data on a trusted meeting point (Analyst-VM). This ensures that not 
all layers are able be compromised at the same time. Currently, the set-up of OSSDIP requires 
at least three (optimally nine) physical machines on trusted hardware. We do not standardize 
the provisioning of required tools for data ingress in the reference implementation. Whenever 
the Data Owner-VM requires non-standard data science packages, the System Administrator 
needs to manually configure the VM. This could be resolved through developing a software 
catalog of audited, trusted data science software along with hardening guidelines to remove 
communication channels. Our proposed reference architecture is not limited to private clouds 
but can also be offered as Cloud-as-a-Service by commercial cloud providers. However, 
additional security measures would need to be implemented since commercial cloud providers 
follow different trust models than research institutions, the scenario of a compromised 
hypervisor should also be considered in this case. As a first consequence, the attestation of the 
Data Node becomes a problem. A commercial provider would need to prove to every user that 
the Data Node is truly disconnected from the Internet and only accessible by the database 
administrator for approved processes. While the Data Monitoring Node does log connection 
establishments and actions that are performed on the Data Node, commercial cloud providers 
would not publish their log files as they would expose themselves to e.g. man-in-the-middle 

Figure 5 To visit data in the 
infrastructure, the Analyst 
must follow the Data Access 
process. Since the Data Node 
contains sensitive data, we 
color it golden.
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attacks by giving away information about session occurrences for e.g. data ingestion. Such a 
problem could be met with a collective attestation scheme (Song et al., 2020) that requires an 
additional attestation node to be present in OSSDIP.

As a second consequence of a using commercial CaaS providers to operate OSSDIP, a single storage 
implementation most likely would exceed the initial budget as the required (highly available) 
storage grows. A likely setup would include multiple physical nodes and multiple partitions so 
that one node can also hold data of several users. This setup requires additional protection, 
roles, privileges to access the data, also because data grid concepts to manage distributed and 
partitioned data would most probably be employed (Navaz, Prabhadevi, and Sangeetha, 2013). 
Not only physical but also virtual nodes would need to be multiplied. On the physical node that 
virtualizes the Analyst-VMs, one VM for each analyst would be created which exposes each VM 
to a potential “bad neighbour VM” problem of stealing critical information through side-channel 
attacks (Ristenpart et al., 2009; Zhang et al., 2012). Such problems are considered in our system 
and processes design through dedicated monitoring nodes which aim at capturing such attack 
attempts by logging every user operation and video-recording the session to the Analyst-VM.

We have presented an architecture and processes for operating a secure data infrastructure 
that supports secure data visiting. Data Owners can make their data accessible to experts for 
specific tasks while maintaining full control of how their data is being used and preventing 
unintentional data leakage. The concept is based on providing access to the subsets of 
(potentially fingerprinted and/or anonymized) data required for a specific activity via isolated 
virtual machines that are monitored and accessible only via remote desktop access along with 
secure processes that ensure no accidental leak of sensitive data.

Furthermore we presented a reference implementation of this infrastructure that is based entirely 
on well-studied open-source components. The set-up, configuration and core operational 
processes have been automated to a degree such that it can be easily deployed within a short 
period of time. Thus our work significantly improves existing approaches in both technical and 
organizational (through secure data processes) measures. Future versions will include additional 
modules for applying fingerprints to data following an approach by (Li, Swarup, and Jajodia, 
2005; Lafaye et al., 2008) to be able to track the origin of a possible data leak. Similarly, modules 
that implement privacy-preserving techniques like k-anonymity, l-diversity and t-closeness are 
currently being integrated into the system. Timestamping and versioning for the central Data 
Node using temporal tables allow, in combination with the time-stamped query store (inside 
the Data Node), to re-produce any subset of data. Support for external citation through e.g. 
DOIs as well as the creation of the according landing pages, is missing in the current version and 
is a candidate for future implementation (to make data FAIR).

As part of the EOSC-Life project, we aim to implement more tools that that are used within 
the biomedical domain (e.g. KNIME,20 Jupyter Notebooks21). Since sensitive data leaking out 
of the infrastructure constitutes a significant threat for any secure data infrastructure, there is 
a strong need for solid, continuous analysis of the monitoring information, both on the visual 
video stream as well as the structured log files to raise according alarms and automatically 
trigger suitable actions to reduce the risk of data leakage.

SUPPLEMENTAL MATERIAL
The entire source code of the system configuration, set-up scripts and the comprehensive 
documentation are available in the public GitLab repository22 under Apache 2 license.
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