Machine Learning Applied for Spectra Classification in X-ray Free Electorn Laser Sciences
DOI:
https://doi.org/10.5334/dsj-2022-015Keywords:
data model, spectral data classification, neural network, weighting techniqueAbstract
Spectroscopy experiment techniques are widely used and produce a huge amount of data especially in facilities with very high repetition rates. At the European XFEL, X-ray pulses can be generated with only 220ns separation in time and a maximum of 27000 pulses per second. In experiments at the different scientific instruments, spectral changes can indicate the change of the system under investigation and so the progress of the experiment. Immediate feedback on the actual state (e.g. time-resolved status of the sample) would be essential to quickly judge how to proceed with the experiment. Hence, we aim to capture two major spectral changes. These are the change of intensity distribution (e.g. drop or appearance) of peaks at certain locations, and the shift of the peaks in the spectrum. Machine Learning (ML) opens up new avenues for data-driven analysis in spectroscopy by offering the possibility for quickly recognizing such specific changes and implementing an online feedback system which can be used near real-time during data collection.
On the other hand, ML requires lots of data that are clearly annotated. Hence, it is important that experimental data should be managed along the FAIR principles. In the case of XFEL experiments, we suggest introducing NeXus glossary and the corresponding data format standards for future experiments.
An example is presented to demonstrate how Neural Network-based ML can be used for accurately classifying the state of an experiment if properly annotated data is provided.
Published
Issue
Section
License
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms. If a submission is rejected or withdrawn prior to publication, all rights return to the author(s):
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Submitting to the journal implicitly confirms that all named authors and rights holders have agreed to the above terms of publication. It is the submitting author's responsibility to ensure all authors and relevant institutional bodies have given their agreement at the point of submission.
Note: some institutions require authors to seek written approval in relation to the terms of publication. Should this be required, authors can request a separate licence agreement document from the editorial team (e.g. authors who are Crown employees).